版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年重慶財(cái)經(jīng)職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.命題:“若a>0,則a2>0”的否命題是()A.若a2>0,則a>0B.若a<0,則a2<0C.若a≤0,則a2≤0D.若a≤0,則a2≤0答案:否命題是將條件,結(jié)論同時(shí)否定,∴若a>0,則a2>0”的否命題是若a≤0,則a2≤0,故為:C2.(a+b)6的展開式的二項(xiàng)式系數(shù)之和為______.答案:根據(jù)二項(xiàng)式系數(shù)的性質(zhì):二項(xiàng)式系數(shù)和為2n所以(a+b)6展開式的二項(xiàng)式系數(shù)之和等于26=64故為:64.3.設(shè)直線的參數(shù)方程是x=2+12ty=3+32t,那么它的斜截式方程是______.答案:∵直線的參數(shù)方程為x=2+12ty=3+32t(t為參數(shù)),消去參數(shù)化為普通方程可得y-3=3(x-2),那么它的斜截式方程是y=3x+3-23.故為:y=3x+3-23.4.設(shè)a∈(0,1)∪(1,+∞),對任意的x∈(0,12],總有4x≤logax恒成立,則實(shí)數(shù)a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當(dāng)0<x≤12時(shí),函數(shù)y=4x的圖象如下圖所示:∵對任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點(diǎn)時(shí),a=22,故虛線所示的y=logax的圖象對應(yīng)的底數(shù)a應(yīng)滿足22<a<1.故為:(22,1).5.為提高廣東中小學(xué)生的健康素質(zhì)和體能水平,廣東省教育廳要求廣東各級各類中小學(xué)每年都要在體育教學(xué)中實(shí)施“體能素質(zhì)測試”,測試總成績滿分為100分.根據(jù)廣東省標(biāo)準(zhǔn),體能素質(zhì)測試成績在[85,100]之間為優(yōu)秀;在[75,85]之間為良好;在[65,75]之間為合格;在(0,60)之間,體能素質(zhì)為不合格.
現(xiàn)從佛山市某校高一年級的900名學(xué)生中隨機(jī)抽取30名學(xué)生的測試成績?nèi)缦拢?/p>
65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.
(1)在答題卷上完成頻率分布表和頻率分布直方圖,并估計(jì)該校高一年級體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù);
(2)在上述抽取的30名學(xué)生中任取2名,設(shè)ξ為體能素質(zhì)為優(yōu)秀的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望(結(jié)果用分?jǐn)?shù)表示);
(3)請你依據(jù)所給數(shù)據(jù)和上述廣東省標(biāo)準(zhǔn),對該校高一學(xué)生的體能素質(zhì)給出一個(gè)簡短評價(jià).答案:(1)由已知的數(shù)據(jù)可得頻率分布表和頻率分布直方圖如下:
分組
頻數(shù)
頻率[55,60)
1
130[60,65)
1
130[65,70)
2
230[70,75)
2
230[75,80)
4
430[80,85)
10
1030[85,90)
6
630[90,95)
3
330[95,100)
1
130根據(jù)抽樣,估計(jì)該校高一學(xué)生中體能素質(zhì)為優(yōu)秀的有1030×900=300人
…(5分)(2)ξ的可能取值為0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987
…(8分)∴ξ分布列為:ξ012P38874087987…(9分)所以,數(shù)學(xué)期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根據(jù)抽樣,估計(jì)該校高一學(xué)生中體能素質(zhì)為優(yōu)秀有1030×900=300人,占總?cè)藬?shù)的13,體能素質(zhì)為良好的有1430×900=420人,占總?cè)藬?shù)的715,體能素質(zhì)為優(yōu)秀或良好的共有2430×900=720人,占總?cè)藬?shù)的45,但體能素質(zhì)為不合格或僅為合格的共有630×900=180人,占總?cè)藬?shù)的15,說明該校高一學(xué)生體能素質(zhì)良好,但仍有待進(jìn)一步提高,還需積極參加體育鍛煉.6.三棱柱ABC-A1B1C1中,M、N分別是BB1、AC的中點(diǎn),設(shè),,=,則等于()
A.
B.
C.
D.答案:A7.如圖,已知△ABC,過頂點(diǎn)A的圓與邊BC切于BC的中點(diǎn)P,與邊AB、AC分別交于點(diǎn)M、N,且CN=2BM,點(diǎn)N平分AC.則AM:BM=()
A.2
B.4
C.6
D.7
答案:D8.若隨機(jī)變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是()
A.2×0.44
B.2×0.45
C.3×0.44
D.3×0.64答案:C9.把平面上一切單位向量歸結(jié)到共同的起點(diǎn),那么這些向量的終點(diǎn)所構(gòu)成的圖形是
______.答案:把平面上一切單位向量歸結(jié)到共同的起點(diǎn),那么這些向量的終點(diǎn)到起點(diǎn)的距離都等于1,所以,由圓的定義得,這些向量的終點(diǎn)所構(gòu)成的圖形是半徑為1的圓.10.化簡的結(jié)果是()
A.a(chǎn)B.C.a(chǎn)2D.答案:B解析:分析:指數(shù)函數(shù)的性質(zhì)11.方程|x|-1=2y-y2表示的曲線為()A.兩個(gè)半圓B.一個(gè)圓C.半個(gè)圓D.兩個(gè)圓答案:兩邊平方整理得:(|x|-1)2=2y-y2,化簡得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,當(dāng)x≥1時(shí),方程為(x-1)2+(y-1)2=1,表示圓心為(1,1)且半徑為1的圓的右半圓;當(dāng)x≤1時(shí),方程為(x+1)2+(y-1)2=1,表示圓心為(-1,1)且半徑為1的圓的右半圓綜上所述,得方程|x|-1=2y-y2表示的曲線為為兩個(gè)半圓故選:A12.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現(xiàn)有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數(shù)字作答).答案:由題意,首先給左上方一個(gè)涂色,有三種結(jié)果,再給最左下邊的上面的涂色,有兩種結(jié)果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結(jié)果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×2×(2+1)=18種結(jié)果,故為18.13.由數(shù)字0、1、2、3、4可組成不同的三位數(shù)的個(gè)數(shù)是()
A.100
B.125
C.64
D.80答案:A14.(不等式選講)
已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:
,
相加得:左3……………(10分)15.在空間直角坐標(biāo)系中,已知A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點(diǎn)間的距離|AB|=______.答案:∵A,B兩點(diǎn)的坐標(biāo)分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.16.已知正三角形ABC的邊長為a,求△ABC的直觀圖△A′B′C′的面積.答案:如圖①、②所示的實(shí)際圖形和直觀圖.由②可知,A′B′=AB=a,O′C′=12OC=34a,在圖②中作C′D′⊥A′B′于D′,則C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.17.直線3x+4y-7=0與直線6x+8y+3=0之間的距離是()
A.
B.2
C.
D.答案:C18.已知矩陣A=abcd,若矩陣A屬于特征值3的一個(gè)特征向量為α1=11,屬于特征值-1的一個(gè)特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個(gè)特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個(gè)特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.19.從甲、乙兩人手工制作的圓形產(chǎn)品中,各自隨機(jī)抽取6件,測得其直徑如下(單位:cm):
甲:9.00,9.20,9.00,8.50,9.10,9.20
乙:8.90,9.60,9.50,8.54,8.60,8.90
據(jù)以上數(shù)據(jù)估計(jì)兩人的技術(shù)穩(wěn)定性,結(jié)論是()
A.甲優(yōu)于乙
B.乙優(yōu)于甲
C.兩人沒區(qū)別
D.無法判斷答案:A20.設(shè)ABC是坐標(biāo)平面上的一個(gè)三角形,P為平面上一點(diǎn)且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C21.把一枚硬幣連續(xù)拋擲兩次,事件A=“第一次出現(xiàn)正面”,事件B=“第二次出現(xiàn)正面”,則P(B|A)等于(
)
A.
B.
C.
D.答案:A22.已知點(diǎn)A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為______.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|
|n|=231×22+1+(23)2=27.故為27.23.一個(gè)盒子裝有10個(gè)紅、白兩色同一型號的乒乓球,已知紅色乒乓球有3個(gè),若從盒子里隨機(jī)取出3個(gè)乒乓球,則其中含有紅色乒乓球個(gè)數(shù)的數(shù)學(xué)期望是______.答案:由題設(shè)知含有紅色乒乓球個(gè)數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×
2140+2×740+3×1120=910.故為:910.24.1
甲、乙、丙三臺機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、丙兩臺機(jī)床加工的零件都是一等品的概率為
(1)分別求甲、乙、丙三臺機(jī)床各自加工零件是一等品的概率;
(2)從甲、乙、丙加工的零件中各取一個(gè)檢驗(yàn),求至少有一個(gè)一等品的概率.答案:見解析解析:解:(1)設(shè)A、B、C分別為甲、乙、丙三臺機(jī)床各自加工的零件是一等品的事件①②③25.已知函數(shù)①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對于f(x)定義域內(nèi)的任意一個(gè)自變量x1都存在唯一個(gè)個(gè)自變量x2,使f(x1)f(x2)=3成立的函數(shù)序號是______.答案:根據(jù)題意可知:①f(x)=3lnx,x=1時(shí),lnx沒有倒數(shù),不成立;②f(x)=3ecosx,任一自變量f(x)有倒數(shù),但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個(gè)自變量,函數(shù)都有倒數(shù),成立;④f(x)=3cosx,當(dāng)x=2kπ+π2時(shí),函數(shù)沒有倒數(shù),不成立.所以成立的函數(shù)序號為③故為③26.點(diǎn)P從(2,0)出發(fā),沿圓x2+y2=4按逆時(shí)針方向運(yùn)動弧長到達(dá)點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為()
A.(-1,
)
B.(-,
-1)
C.(-1,
-)
D.(-,
1)答案:C27.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α28.若動點(diǎn)P到兩個(gè)定點(diǎn)F1(-1,0)、F2(1,0)的距離之差的絕對值為定值a(0≤a≤2),試求動點(diǎn)P的軌跡.答案:①當(dāng)a=0時(shí),||PF1|-|PF2||=0,從而|PF1|=|PF2|,所以點(diǎn)P的軌跡為直線:線段F1F2的垂直平分線.②當(dāng)a=2時(shí),||PF1|-|PF2||=2=|F1F2|,所以點(diǎn)P的軌跡為兩條射線.③當(dāng)0<a<2時(shí),||PF1|-|PF2||=a<|F1F2|,所以點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線.29.在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是______.答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的基本事件有C52=10種結(jié)果,其中至少有一個(gè)紅球的事件包括C22+C21C31=7個(gè)基本事件,根據(jù)古典概型公式得到P=710,故為:710.30.若圓x2+y2=9上每個(gè)點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的,則所得到的曲線的方程是()
A.
B.
C.
D.答案:C31.若集合M={a,b,c}中的元素是△ABC的三邊長,則△ABC一定不是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等腰三角形答案:D32.已知曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)上一點(diǎn)P,原點(diǎn)為0,直線P0的傾斜角為π4,則P點(diǎn)的坐標(biāo)是______.答案:根據(jù)題意,曲線x=3cosθy=4sinθ(θ為參數(shù),0≤θ≤π)消去參數(shù)化成普通方程,得x29+y216=1(y≥0)∵直線P0的傾斜角為π4,∴P點(diǎn)在直線y=x上,將其代入橢圓方程得x29+x216=1,解之得x=y=125(舍負(fù)),因此點(diǎn)P的坐標(biāo)為(125,125)故為:(125,125)33.用演繹法證明y=x2是增函數(shù)時(shí)的大前提是______.答案:∵證明y=x2是增函數(shù)時(shí),依據(jù)的原理就是增函數(shù)的定義,∴用演繹法證明y=x2是增函數(shù)時(shí)的大前提是:增函數(shù)的定義故填增函數(shù)的定義34.用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面向上的次數(shù)為ξ;乙拋擲3次,記正面向上的次數(shù)為η.
(Ⅰ)分別求ξ和η的期望;
(Ⅱ)規(guī)定:若ξ>η,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.答案:(Ⅰ)由題意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲獲勝有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3則甲獲勝的概率為P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)35.中,是邊上的中線(如圖).
求證:.
答案:證明見解析解析:取線段所在的直線為軸,點(diǎn)為原點(diǎn)建立直角坐標(biāo)系.設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為.可得,,,.,..36.下列函數(shù)中,定義域?yàn)椋?,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域?yàn)椋?,+∞),函數(shù)y=x的定義域?yàn)閇0,+∞),函數(shù)y=1x2的定義域?yàn)閧x|x≠0},函數(shù)y=12x的定義域?yàn)镽,故只有A中的函數(shù)滿足定義域?yàn)椋?,+∞),故選A.37.OA、OB(O為原點(diǎn))是圓x2+y2=2的兩條互相垂直的半徑,C是該圓上任一點(diǎn),且OC=λOA+μOB,則λ2+μ2=______.答案:∵OC=λOA+μOB,OA⊥OB∴OA?OB=0∴OA2=OB2=OC2=2∴OC2=(λOA+μOB)2=λ2OA2+μ2OB2=2(λ2+μ2)=2∴λ2+μ2=1故為:138.與橢圓+y2=1共焦點(diǎn)且過點(diǎn)P(2,1)的雙曲線方程是()
A.-y2=1
B.-y2=1
C.-=1
D.x2-=1答案:B39.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此
a+b表示向北偏東30°方向航行2km.故選B.40.一個(gè)口袋內(nèi)有4個(gè)不同的紅球,6個(gè)不同的白球,
(1)從中任取4個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?
(2)若取一個(gè)紅球記2分,取一個(gè)白球記1分,從中任取5個(gè)球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個(gè)分類計(jì)數(shù)問題,將取出4個(gè)球分成三類情況取4個(gè)紅球,沒有白球,有C44種取3個(gè)紅球1個(gè)白球,有C43C61種;取2個(gè)紅球2個(gè)白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個(gè)紅球,y個(gè)白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種41.若=(2,0),那么=(
)
A.(1,2)
B.3
C.2
D.1答案:C42.下列各組集合,表示相等集合的是()
①M(fèi)={(3,2)},N={(2,3)};
②M={3,2},N={2,3};
③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不對答案:①中M中表示點(diǎn)(3,2),N中表示點(diǎn)(2,3);②中由元素的無序性知是相等集合;③中M表示一個(gè)元素,即點(diǎn)(1,2),N中表示兩個(gè)元素分別為1,2.所以表示相等的集合是②.故選B.43.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(u,9),若p(ξ>3)=p(ξ<1),則u=______.答案:∵隨機(jī)變量ξ服從正態(tài)分布N(u,9),p(ξ>3)=p(ξ<1),∴u=3+12=2故為244.列舉兩種證明兩個(gè)三角形相似的方法.答案:三邊對應(yīng)成比例,兩個(gè)三角形相似,兩邊對應(yīng)成比例且夾角相等,兩個(gè)三角形相似.45.曲線(t為參數(shù))上的點(diǎn)與A(-2,3)的距離為,則該點(diǎn)坐標(biāo)是()
A.(-4,5)
B.(-3,4)或(-1,2)
C.(-3,4)
D.(-4,5)或(0,1)答案:B46.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當(dāng)n=2時(shí),左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設(shè)n=k(k≥2)時(shí)不等式成立,即S
2k=1+12+13+14+…+12k≥1+k2,當(dāng)n=k+1時(shí),不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對于任意的n≥2正整數(shù)成立.47.設(shè)F1,F(xiàn)2為定點(diǎn),|F1F2|=6,動點(diǎn)M滿足|MF1|+|MF2|=6,則動點(diǎn)M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內(nèi),若動點(diǎn)M到F1、F2兩點(diǎn)的距離之和等于6,而6正好等于兩定點(diǎn)F1、F2的距離,則動點(diǎn)M的軌跡是以F1,F(xiàn)2為端點(diǎn)的線段.故選D.48.兩個(gè)正方體M1、M2,棱長分別a、b,則對于正方體M1、M2有:棱長的比為a:b,表面積的比為a2:b2,體積比為a3:b3.我們把滿足類似條件的幾何體稱為“相似體”,下列給出的幾何體中是“相似體”的是()
A.兩個(gè)球
B.兩個(gè)長方體
C.兩個(gè)圓柱
D.兩個(gè)圓錐答案:A49.已知M和N分別是四面體OABC的邊OA,BC的中點(diǎn),且,若=a,=b,=c,則用a,b,c表示為()
A.
B.
C.
D.
答案:B50.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為x=4cosθy=2sinθ(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,得曲線C2的極坐標(biāo)方程為ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲線C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)設(shè)曲線C1與x軸的一個(gè)交點(diǎn)的坐標(biāo)為P(m,0)(m>0),經(jīng)過點(diǎn)P作曲線C2的切線l,求切線l的方程.答案:(Ⅰ)曲線C1:x216+y24=1;曲線C2:(x-1)2+(y+2)2=5;(3分)曲線C1為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長半軸長是4,短半軸長是2的橢圓;曲線C2為圓心為(1,-2),半徑為5的圓(2分)(Ⅱ)曲線C1:x216+y24=1與x軸的交點(diǎn)坐標(biāo)為(-4,0)和(4,0),因?yàn)閙>0,所以點(diǎn)P的坐標(biāo)為(4,0),(2分)顯然切線l的斜率存在,設(shè)為k,則切線l的方程為y=k(x-4),由曲線C2為圓心為(1,-2),半徑為5的圓得|k+2-4k|k2+1=5,解得k=3±102,所以切線l的方程為y=3±102(x-4)(3分)第2卷一.綜合題(共50題)1.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是()
(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;
(2)可以用多個(gè)數(shù)值來刻畫數(shù)據(jù)的離散程度;
(3)對于不同的數(shù)據(jù)集,其離散程度大時(shí),該數(shù)值應(yīng)越?。?/p>
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正確答案:C2.若根據(jù)10名兒童的年齡
x(歲)和體重
y(㎏)數(shù)據(jù)用最小二乘法得到用年齡預(yù)報(bào)體重的回歸方程是
y=2x+7,已知這10名兒童的年齡分別是
2、3、3、5、2、6、7、3、4、5,則這10名兒童的平均體重是()
A.17㎏
B.16㎏
C.15㎏
D.14㎏答案:C3.“a、b、c等比”是“b2=ac”的()A.充分不必要條件B.充要條件C.必要不充分條件D.既不充分也不必要條件答案:由“a,G,b成等比”可得ba=cb,故有“b2=ac”成立,故充分性成立.但由“b2=ac”,不能推出“a、b、c成等比數(shù)列”,如a=b=0,c=1時(shí),盡管有“b2=ac”,但0,0,1不能構(gòu)成等比數(shù)列,故必要性不成立.故“b2=ac成等比”是“b2=ac”的充分不必要條件,故選B.4.已知A(k,12,1),B(4,5,1),C(-k,10,1),且A、B、C三點(diǎn)共線,則k=______.答案:∵AB=(4-k,-7,0),BC=(-k-4,5,0),且A、B、C三點(diǎn)共線,∴存在實(shí)數(shù)λ滿足AB=λBC,即4-k=λ(-k-4)-7=5λ0=0,解得k=-23.故為-23.5.對于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2012次操作后得到的數(shù)是
()A.25B.250C.55D.133答案:第1次操作為23+53=133,第2次操作為13+33+33=55,第3次操作為53+53=250,第4次操作為23+53+03=133∴操作結(jié)果,以3為周期,循環(huán)出現(xiàn)∵2012=3×670+2∴第2012次操作后得到的數(shù)與第2次操作后得到的數(shù)相同∴第2012次操作后得到的數(shù)是55故選C.6.已知x,y,z滿足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由題意可得P(x,y,z),在以M(3,4,0)為球心,2為半徑的球面上,x2+y2+z2表示原點(diǎn)與點(diǎn)P的距離的平方,顯然當(dāng)O,P,M共線且P在O,M之間時(shí),|OP|最小,此時(shí)|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故為:27-102.7.在平面直角坐標(biāo)系下,曲線C1:x=2t+2ay=-t(t為參數(shù)),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點(diǎn),則實(shí)數(shù)a的取值范圍
______.答案:∵曲線C1:x=2t+2ay=-t(t為參數(shù)),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點(diǎn),∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.8.如圖,△ABC是圓的內(nèi)接三角形,PA切圓于點(diǎn)A,PB交圓于點(diǎn)D.若∠ABC=60°,PD=1,BD=8,則∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割線定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,39.點(diǎn)(2,0,3)在空間直角坐標(biāo)系中的位置是在()
A.y軸上
B.xOy平面上
C.xOz平面上
D.第一卦限內(nèi)答案:C10.已知橢圓C:+y2=1的右焦點(diǎn)為F,右準(zhǔn)線l,點(diǎn)A∈l,線段AF交C于點(diǎn)B.若=3,則=(
)
A.
B.2
C.
D.3答案:A11.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.12.已知點(diǎn)M(a,b)在直線3x+4y=15上,則a2+b2的最小值為______.答案:a2+b2的幾何意義是到原點(diǎn)的距離,它的最小值轉(zhuǎn)化為原點(diǎn)到直線3x+4y=15的距離:d=155=3.故為3.13.某學(xué)校為了調(diào)查高三年級的200名文科學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對該年級的文科學(xué)生進(jìn)行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進(jìn)行調(diào)查,則這兩種抽樣的方法依次為()A.分層抽樣,簡單隨機(jī)抽樣B.簡單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機(jī)抽樣,系統(tǒng)抽樣答案:第一種由學(xué)生會的同學(xué)隨機(jī)抽取20名同學(xué)進(jìn)行調(diào)查;這是一種簡單隨機(jī)抽樣,第二種由教務(wù)處對該年級的文科學(xué)生進(jìn)行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進(jìn)行調(diào)查,對于個(gè)體比較多的總體,采用系統(tǒng)抽樣,故選D.14.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)15.已知,向量與向量的夾角是,則x的值為()
A.±3
B.±
C.±9
D.3答案:D16.已知某人在某種條件下射擊命中的概率是,他連續(xù)射擊兩次,其中恰有一次射中的概率是()
A.
B.
C.
D.答案:C17.下列在曲線上的點(diǎn)是()
A.
B.
C.
D.答案:D18.已知函數(shù)y=ax2+bx+c,如果a>b>c,且a+b+c=0,則它的圖象是(
)
A.
B.
C.
D.
答案:D19.各項(xiàng)都為正數(shù)的數(shù)列{an},滿足a1=1,an+12-an2=2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.答案:(Ⅰ)∵an+12-an2=2,∴an2為首項(xiàng)為1,公差為2的等差數(shù)列,∴an2=1+(n-1)×2=2n-1,又an>0,則an=2n-1(Ⅱ)只需證:1+13+…+12n-1≤
2n-1.1當(dāng)n=1時(shí),左邊=1,右邊=1,所以命題成立.當(dāng)n=2時(shí),左邊<右邊,所以命題成立②假設(shè)n=k時(shí)命題成立,即1+13+…+12k-1≤2k-1,當(dāng)n=k+1時(shí),左邊=1+13+…+12K-1+12K+1≤2K-1+12K+1.<2K-1+22K+1+2K-1=2K-1+2(2K+1-2K-1)
2=2(K+1)-1.命題成立由①②可知,1a1+1a2+…+1an≤2n-1對一切n∈N+恒成立.20.a=(2,1),b=(3,4),則向量a在向量b方向上的投影為______.答案:根據(jù)向量在另一個(gè)向量上投影的定義向量a在向量b方向上的投影為a?b|b|∵a=(2,1),b=(3,4),∴a?b=10,|b|=5∴a?b|b|=2故為:221.圓臺的一個(gè)底面周長是另一個(gè)底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,則圓臺較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因?yàn)閳A臺的一個(gè)底面周長是另一個(gè)底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A22.若關(guān)于x的方程x2+ax+a2-1=0有一正根和一負(fù)根,則a的取值范圍為______.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開口向上,若方程有一正一負(fù)根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.23.如圖,正六邊形ABCDEF中,=()
A.
B.
C.
D.
答案:D24.對變量x,y
有觀測數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點(diǎn)圖1;對變量u,v
有觀測數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點(diǎn)圖2.下列說法正確的是()
A.變量x
與y
正相關(guān),u
與v
正相關(guān)
B.變量x
與y
負(fù)相關(guān),u
與v
正相關(guān)
C.變量x
與y
正相關(guān),u
與v
負(fù)相關(guān)
D.變量x
與y
負(fù)相關(guān),u
與v
負(fù)相關(guān)答案:B25.列舉兩種證明兩個(gè)三角形相似的方法.答案:三邊對應(yīng)成比例,兩個(gè)三角形相似,兩邊對應(yīng)成比例且夾角相等,兩個(gè)三角形相似.26.若雙曲線的漸近線方程為y=±3x,它的一個(gè)焦點(diǎn)是(10,0),則雙曲線的方程是______.答案:因?yàn)殡p曲線的漸近線方程為y=±3x,則設(shè)雙曲線的方程是x2-y29=λ,又它的一個(gè)焦點(diǎn)是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=127.大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.
問:(1)這種猜想,你認(rèn)為正確嗎?
(2)不管猜想是否正確,這個(gè)結(jié)論是通過什么推理方法得到的?
(3)如果結(jié)論正確,請用數(shù)學(xué)歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時(shí),a+b+c+d=1;n=2時(shí),16a+8b+4c+d=9;n=3時(shí),81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數(shù)學(xué)歸納法證明:①n=1時(shí),結(jié)論成立;②假設(shè)n=k時(shí),結(jié)論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時(shí),左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結(jié)論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立28.將參數(shù)方程x=1+2cosθy=2sinθ(θ為參數(shù))化成普通方程為
______.答案:由題意得,x=1+2cosθy=2sinθ?x-1=2cosθy=2sinθ,將參數(shù)方程的兩個(gè)等式兩邊分別平方,再相加,即可消去含θ的項(xiàng),所以有(x-1)2+y2=4.29.設(shè)隨機(jī)變量X~B(10,0.8),則D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C30.若a1-i=1-bi,其中a,b都是實(shí)數(shù),i是虛數(shù)單位,則|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故為:5.31.對于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.32.兩條平行直線3x+4y-12=0與ax+8y+11=0之間的距離為(
)
A.
B.
C.7
D.答案:D33.如圖所示直角梯形ABCD中,∠A=90°,PA⊥面ABCD,AD||BC,AB=BC=a,AD=2a,與底面ABCD成300角.若AE⊥PD,E為垂足,PD與底面成30°角.
(1)求證:BE⊥PD;
(2)求異面直線AE與CD所成的角的大?。鸢福簽榱擞?jì)算方便不妨設(shè)a=1.(1)證明:根據(jù)題意可得:以A為原點(diǎn),AB,AD,AP所在直線為坐標(biāo)軸建立直角坐標(biāo)系(如圖)則A(0,0,0),B(1,0,0)D(0,2,0)P(0,0,233)AB?PD=(1,0,0)?(0,2,-233)=0又AE?PD=0∴AB⊥PD,AE⊥PD所以PD⊥面BEA,BE?面BEA,∴PD⊥BE(2)∵PA⊥面ABCD,PD與底面成30°角,∴∠PDA=30°過E作EF⊥AD,垂足為F,則AE=AD?sin30°=1,∠EAF=60°AF=12,EF=32∴E(0,12,32),于是AE=(0,12,32)又C(1,1,0),D(0,2,0),CD=(-1,1,0)則COSθ=AE?CD|AE||CD|=24∴AE與CD所成角的余弦值為24.34.在某項(xiàng)測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.6,則ξ在(0,1)內(nèi)取值的概率為()
A.0.1
B.0.2
C.0.3
D.0.4答案:C35.下列各圖形不是函數(shù)的圖象的是()A.
B.
C.
D.
答案:由函數(shù)的概念,B中有的x,存在兩個(gè)y與x對應(yīng),不符合函數(shù)的定義,而ACD均符合.故選B36.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______
時(shí),方程的解集是有限集;滿足條件______
時(shí),方程的解集是無限集;滿足條件______
時(shí),方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個(gè)解時(shí),為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時(shí),方程有無數(shù)組解,方程的解集是無限集;滿足條件
a=0,b≠0
時(shí),方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;
a=0,b≠0.37.已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長為8,離心率e=2,過雙曲線的弦AB被點(diǎn)P(4,2)平分;
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求弦AB所在直線方程;
(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點(diǎn)在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實(shí)軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實(shí)軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1
y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點(diǎn)坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.38.用演繹法證明y=x2是增函數(shù)時(shí)的大前提是______.答案:∵證明y=x2是增函數(shù)時(shí),依據(jù)的原理就是增函數(shù)的定義,∴用演繹法證明y=x2是增函數(shù)時(shí)的大前提是:增函數(shù)的定義故填增函數(shù)的定義39.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()
A.1
B.2
C.3
D.5
答案:D40.直線x=-3+ty=1-t(t是參數(shù))被圓x=5cosθy=5sinθ(θ是參數(shù))所截得的弦長是______.答案:把直線和圓的參數(shù)方程化為普通方程得:直線x+y+2=0,圓x2+y2=25,畫出函數(shù)圖象,如圖所示:過圓心O(0,0)作OC⊥AB,根據(jù)垂徑定理得到:AC=BC=12AB,連接OA,則|OA|=5,且圓心O到直線x+y+2=0的距離|OC|=|2|2=2,在直角△ACO中,根據(jù)勾股定理得:AC=23,所以AB=223,則直線被圓截得的弦長為223.故為:22341.A、B為球面上相異兩點(diǎn),則通過A、B兩點(diǎn)可作球的大圓有()A.一個(gè)B.無窮多個(gè)C.零個(gè)D.一個(gè)或無窮多個(gè)答案:如果A,B兩點(diǎn)為球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過A、B兩點(diǎn)可作球的無數(shù)個(gè)大圓如果A,B兩點(diǎn)不是球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過A、B兩點(diǎn)可作球的一個(gè)大圓故選:D42.若a<b<c,x<y<z,則下列各式中值最大的一個(gè)是()
A.a(chǎn)x+cy+bz
B.bx+ay+cz
C.bx+cy+az
D.a(chǎn)x+by+cz答案:D43.已知兩定點(diǎn)F1(5,0),F(xiàn)2(-5,0),曲線C上的點(diǎn)P到F1、F2的距離之差的絕對值是8,則曲線C的方程為()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:據(jù)雙曲線的定義知:P的軌跡是以F1(5,0),F(xiàn)2(-5,0)為焦點(diǎn),以實(shí)軸長為8的雙曲線.所以c=5,a=4,b2=c2-a2=9,所以雙曲線的方程為:x216-y29=1故選B44.若矩陣M=1101,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(diǎn)(x0,y0),(x,y)是所得的直線上一點(diǎn),[1
1][x]=[x0][0
1][y]=[y0]∴x+y=x0y=y0,∴代入直線x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.45.設(shè),則之間的大小關(guān)系是
.答案:b>a>c解析:略46.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…當(dāng)n∈N*時(shí),試猜想12+22+32+…+n2的值,并用數(shù)學(xué)歸納法給予證明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用數(shù)學(xué)歸納法給予證明:(1)當(dāng)n=1時(shí),由已知得原式成立;(2)假設(shè)當(dāng)n=k時(shí),原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,當(dāng)n=k+1時(shí),12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1時(shí),原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.47.如圖,從圓O外一點(diǎn)P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.48.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點(diǎn)E,過點(diǎn)E作⊙O的切線交AC于點(diǎn)D,交AB的延長線于點(diǎn)P.問:PD與AC是否互相垂直?請說明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.49.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(Ⅰ)求證:AC是△BDE的外接圓的切線;
(Ⅱ)若AD=23,AE=6,求EC的長.答案:證明:(Ⅰ)取BD的中點(diǎn)O,連接OE.∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,∴∠CBE=∠BEO,∴BC∥OE.…(3分)∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線.
…(5分)(Ⅱ)設(shè)⊙O的半徑為r,則在△AOE中,OA2=OE2+AE2,即(r+23)2=r2+62,解得r=23,…(7分)∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.∴在Rt△BCE中,可得EC=12BE=12×3r=12×3×23=3.
…(10分)50.如圖,在△ABC中,,,則實(shí)數(shù)λ的值為()
A.
B.
C.
D.
答案:D第3卷一.綜合題(共50題)1.某程序圖如圖所示,該程序運(yùn)行后輸出的結(jié)果是______.答案:由圖知運(yùn)算規(guī)則是對S=2S,故第一次進(jìn)入循環(huán)體后S=21,第二次進(jìn)入循環(huán)體后S=22=4,第三次進(jìn)入循環(huán)體后S=24=16,第四次進(jìn)入循環(huán)體后S=216>2012,退出循環(huán).故該程序運(yùn)行后輸出的結(jié)果是:k=4+1=5.故為:52.從單詞“equation”選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個(gè)B.480個(gè)C.720個(gè)D.840個(gè)答案:要選取5個(gè)字母時(shí)首先從其它6個(gè)字母中選3個(gè)有C63種結(jié)果,再與“qu“組成的一個(gè)元素進(jìn)行全排列共有C63A44=480,故選B.3.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說:“是乙或丙獲獎(jiǎng).”乙說:“甲、丙都未獲獎(jiǎng).”丙說:“我獲獎(jiǎng)了.”丁說:“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對的,則獲獎(jiǎng)的歌手是()A.甲B.乙C.丙D.丁答案:若甲是獲獎(jiǎng)的歌手,則都說假話,不合題意.若乙是獲獎(jiǎng)的歌手,則甲、乙、丁都說真話,丙說假話,不符合題意.若丁是獲獎(jiǎng)的歌手,則甲、丁、丙都說假話,乙說真話,不符合題意.故獲獎(jiǎng)的歌手是丙故先C4.已知不等式a≤對x取一切負(fù)數(shù)恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對x取一切負(fù)數(shù)恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.5.若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:36.如圖,⊙O中弦AB,CD相交于點(diǎn)P,已知AP=3,BP=2,CP=1,則DP=()
A.3
B.4
C.5
D.6答案:D7.用反證法證明“a+b=1”時(shí)的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C8.“∵四邊形ABCD為矩形,∴四邊形ABCD的對角線相等”,補(bǔ)充以上推理的大前提為()
A.正方形都是對角線相等的四邊形
B.矩形都是對角線相等的四邊形
C.等腰梯形都是對角線相等的四邊形
D.矩形都是對邊平行且相等的四邊形答案:B9.斜二測畫法的規(guī)則是:
(1)在已知圖形中建立直角坐標(biāo)系xoy,畫直觀圖
時(shí),它們分別對應(yīng)x′和y′軸,兩軸交于點(diǎn)o′,使∠x′o′y′=______,它們確定的平面表示水平平面;
(2)
已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成
______;
(3)已知圖形中平行于x軸的線段的長度,在直觀圖中
______;平行于y軸的線段,在直觀圖中
______.答案:按照斜二測畫法的規(guī)則填空故為:(1)45°或135°;(2)平行于x′軸和y′軸;(3)長度不變;長度減半10.已知橢圓C:+y2=1的右焦點(diǎn)為F,右準(zhǔn)線l,點(diǎn)A∈l,線段AF交C于點(diǎn)B.若=3,則=(
)
A.
B.2
C.
D.3答案:A11.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設(shè)圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.12.如圖,已知OA、OB是⊙O的半徑,且OA⊥OB,P是線段OA上一點(diǎn),直線BP交⊙O于點(diǎn)Q,過Q作⊙O的切線交直線OA于點(diǎn)E,求證:∠OBP+∠AQE=45°.答案:證明:連接AB,則∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°13.已知二次函數(shù)f(x)=x2+bx+c,f(0)<0,則該函數(shù)零點(diǎn)的個(gè)數(shù)為()
A.1
B.2
C.3
D.0答案:B14.選修4-1:幾何證明選講
如圖,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AE的長為m,AC的長為n,AD,AB的長是關(guān)于x的方程x2-14x+mn=0的兩個(gè)根.
(Ⅰ)證明:C,B,D,E四點(diǎn)共圓;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.
答案:(I)連接DE,根據(jù)題意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,從而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四點(diǎn)共圓.(Ⅱ)m=4,n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.故AD=2,AB=12.取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點(diǎn),連接DH.∵C,B,D,E四點(diǎn)共圓,∴C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四點(diǎn)所在圓的半徑為5215.M∪{1}={1,2,3}的集合M的個(gè)數(shù)是______.答案:∵M(jìn)∪{1}={1,2,3},∴M={1,2,3}或{2,3},則符合題意M的個(gè)數(shù)是2.故為:216.若關(guān)于x的方程x2+ax+a2-1=0有一正根和一負(fù)根,則a的取值范圍為______.答案:令f(x)=x2+ax+a2-1,∴二次函數(shù)開口向上,若方程有一正一負(fù)根,則只需f(0)<0,即a2-1<0,∴-1<a<1.故為:-1<a<1.17.若向量a,b,c滿足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.18.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α19.點(diǎn)O是△ABC內(nèi)一點(diǎn),若+=-,則是S△AOB:S△AOC=()
A.1
B.
C.
D.答案:A20.已知x,y的取值如下表:
x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),則回歸方程為.y=bx+a必過點(diǎn)______.答案:.X=0+1+3+44=2,.Y=2.2+4.3+4.8+6.74=92,故樣本中心點(diǎn)的坐標(biāo)為(2,92).故為:(2,92).21.若O(0,0),A(1,2)且OA′=2OA.則A′點(diǎn)坐標(biāo)為()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:設(shè)A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故選C.22.已知,棱長都相等的正三棱錐內(nèi)接于一個(gè)球,某學(xué)生畫出四個(gè)過球心的平面截球與正三棱錐所得的圖形,如下圖所示,則
A、以上四個(gè)圖形都是正確的
B、只有(2)(4)是正確的
C、只有(4)是錯(cuò)誤的
D、只有(1)(2)是正確的答案:C23.下列幾何體各自的三視圖中,有且僅有兩個(gè)視圖相同的是()
A.①②B.①③C.①④D.②④答案:正方體的三視圖都相同,而三棱臺的三視圖各不相同,圓錐和正四棱錐的,正視圖和側(cè)視圖相同,所以,正確為D.故選D24.如圖,PT是⊙O的切線,切點(diǎn)為T,直線PA與⊙O交于A、B兩點(diǎn),∠TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點(diǎn),可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,3225.知x、y、z均為實(shí)數(shù),
(1)若x+y+z=1,求證:++≤3;
(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明
因?yàn)椋?+)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.
7分(2)解
因?yàn)?12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.
14分26.已知P(B|A)=,P(A)=,則P(AB)=()
A.
B.
C.
D.答案:D27.某工廠生產(chǎn)產(chǎn)品,用傳送帶將產(chǎn)品送到下一道工序,質(zhì)檢人員每隔十分鐘在傳送帶的某一個(gè)位置取一件檢驗(yàn),則這種抽樣方法是()A.簡單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.非上述答案答案:本題符合系統(tǒng)抽樣的特征:總體中各單位按一定順序排列,根據(jù)樣本容量要求確定抽選間隔,然后隨機(jī)確定起點(diǎn),每隔一定的間隔抽取一個(gè)單位的一種抽樣方式.故選B.28.某簡單幾何體的三視圖如圖所示,其正視圖.側(cè)視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個(gè)幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個(gè)三棱錐,設(shè)出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2
①xz=4
②yz=8
③由①②得z=2y
④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.29.要從已編號(1~60)的60枚最新研制的某型導(dǎo)彈中隨機(jī)抽取6枚來進(jìn)行發(fā)射試驗(yàn),用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導(dǎo)彈的編號可能是()
A.5、10、15、20、25、30
B.3、13、23、33、43、53
C.1、2、3、4、5、6
D.2、4、8、16、32、48答案:B30.通過隨機(jī)詢問110名不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表:
男女總計(jì)愛好402060不愛好203050總計(jì)6050110為了判斷愛好該項(xiàng)運(yùn)動是否與性別有關(guān),由表中的數(shù)據(jù)此算得k2≈7.8,因?yàn)镻(k2≥6.635)≈0.01,所以判定愛好該項(xiàng)運(yùn)動與性別有關(guān),那么這種判斷出錯(cuò)的可能性為______.答案:由題意知本題所給的觀測值,k2≈7.8∵7.8>6.635,又∵P(k2≥6.635)≈0.01,∴這個(gè)結(jié)論有0.01=1%的機(jī)會說錯(cuò),故為:1%31.從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),這個(gè)兩位數(shù)大于40的概率()A.15B.25C.35D.45答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是從數(shù)字1,2,3,4,5中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),共有A52=20種結(jié)果,滿足條件的事件可以列舉出有,41,41,43,45,54,53,52,51共有8個(gè),根據(jù)古典概型概率公式得到P=820=25,故選B.32.表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的概率;一個(gè)隨機(jī)事件發(fā)生的可能性很大,那么P的值接近1又不等于1,故為:概率.33.已知函數(shù)f(x)=(12)x
x≥4
f(x+1)
x<4
則f(2+log23)的值為______.答案:∵2+log23∈(2,3),∴f(2+log23)=f(2+log23+1)=f(3+log23)=(12)3+log23=(12)3(12)log23=18×13=124故為12434.一動圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設(shè)動圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點(diǎn)P的軌跡是雙曲線的一支.故選C.35.已知點(diǎn)D是△ABC的邊BC的中點(diǎn),若記AB=a,AC=b,則用a,b表示AD為______.答案:以AB,AC為臨邊作平行四邊形ACEB,連接其對角線AE、BC交與點(diǎn)D,易知D是△ABC的邊BC的中點(diǎn),且D是AE的中點(diǎn),如圖:由向量的平行四邊形法則可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故為:AD=12(a+b)36.曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程______.答案:設(shè)P(x,y)是曲線y=log2x上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣M=0110對應(yīng)變換作用下新曲線上的對應(yīng)點(diǎn),則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結(jié)果是曲線方程y=2x故為:y=2x37.如圖,某公司制造一種海上用的“浮球”,它是由兩個(gè)半球和一個(gè)圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.
(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?
(2)假設(shè)該“浮球”的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元.求該“浮球”的建造費(fèi)用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個(gè)半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個(gè)半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費(fèi)用為20元,半球形部分每平方米建造費(fèi)用為30元,∴該“浮球”的建造費(fèi)用為2π×20+π×30=70π≈220元.38.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是
______,過這個(gè)圓外一點(diǎn)P(2,3)的該圓的切線方程是
______;答案:∵圓x=1+cosθy
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)員工福利健康飲食計(jì)劃設(shè)計(jì)
- 企業(yè)如何借鑒兒童習(xí)慣提升員工福利
- 創(chuàng)新驅(qū)動打造智能LED手電筒新紀(jì)元
- 兒童安全用藥家庭藥品清單及注意事項(xiàng)
- 利用實(shí)驗(yàn)教學(xué)培養(yǎng)學(xué)生的創(chuàng)新思維能力
- 利用現(xiàn)代科技構(gòu)建食堂衛(wèi)生體系
- 辦公健康計(jì)劃中的家庭式臥床病人鍛煉策略
- 失眠障礙的西醫(yī)治療指南及中醫(yī)治療
- 2024年雙氰胺項(xiàng)目規(guī)劃申請報(bào)告
- 2024年無線接入網(wǎng)用的手機(jī)項(xiàng)目立項(xiàng)申請報(bào)告模稿
- 2024-2030年中國建設(shè)工程質(zhì)量檢測行業(yè)發(fā)展模式規(guī)劃分析報(bào)告
- 廣東省廣州越秀區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試卷(含答案)
- 2024新版(北京版)三年級英語上冊單詞帶音標(biāo)
- 2023醫(yī)療質(zhì)量安全核心制度要點(diǎn)釋義(第二版)對比版
- “非遺”之首-昆曲經(jīng)典藝術(shù)欣賞智慧樹知到期末考試答案章節(jié)答案2024年北京大學(xué)
- (高清版)JTG D50-2017 公路瀝青路面設(shè)計(jì)規(guī)范
- 外科學(xué)(1)智慧樹知到課后章節(jié)答案2023年下溫州醫(yī)科大學(xué)
- GA 1517-2018金銀珠寶營業(yè)場所安全防范要求
- 裝飾裝修工程完整投標(biāo)文件.doc
- 汽車維修創(chuàng)業(yè)計(jì)劃書
- 直讀光譜儀測量低合金鋼中各元素含量的不確定度評定
評論
0/150
提交評論