版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年長春早期教育職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.復(fù)數(shù)1+i(i為虛數(shù)單位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故選A.2.已知點P的坐標(biāo)為(3,4,5),試在空間直角坐標(biāo)系中作出點P.答案:由P(3,4,5)可知點P在Ox軸上的射影為A(3,0,0),在Oy軸上射影為B(0,4,0),以O(shè)A,OB為鄰邊的矩形OACB的頂點C是點P在xOy坐標(biāo)平面上的射影C(3,4,0).過C作直線垂直于xOy坐標(biāo)平面,并在此直線的xOy平面上方截取5個單位,得到的就是點P.3.已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3,求p的值.答案:因為x的最大值為3,故x-3<0,原不等式等價于|x2-4x+p|-x+3≤5,(3分)即-x-2≤x2-4x+p≤x+2,則x2-5x+p-2≤0x2-3x+p+2≥0
解的最大值為3,(6分)設(shè)x2-5x+p-2=0
的根分別為x1和x2,x1<x2,x2-3x+p+2=0的根分別為x3和
x4,x3<x4.則x2=3,或x4=3.若x2=3,則9-15+p-2=0,p=8,若x4=3,則9-9+p+2=0,p=-2.當(dāng)p=-2時,原不等式無解,檢驗得:p=8
符合題意,故p=8.(12分)4.拋擲兩個骰子,若至少有一個1點或一個6點出現(xiàn),就說這次試驗失?。敲?,在3次試驗中成功2次的概率為()
A.
B.
C.
D.答案:D5.設(shè)雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為______.答案:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點是在x軸時,ba=23,設(shè)a=3k,b=2k,則c=13k,∴e=133.焦點在y軸時ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=132.故為:133或1326.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點在y軸上的橢圓的是()
A.
B.(a>b>0)
C.
D.
答案:C7.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或68.已知O是空間任意一點,A、B、C、D四點滿足任三點均不共線,但四點共面,且=2x+3y+4z,則2x+3y+4z=(
)答案:﹣19.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設(shè)命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.10.直線y=x-1的傾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A11.(文)函數(shù)f(x)=x+2x(x∈(0
,
2
]
)的值域是______.答案:f(x)=x+2x≥
22當(dāng)且僅當(dāng)x=2時取等號該函數(shù)在(0,2)上單調(diào)遞減,在(2,2]上單調(diào)遞增∴當(dāng)x=2時函數(shù)取最小值22,x趨近0時,函數(shù)值趨近無窮大故函數(shù)f(x)=x+2x(x∈(0
,
2
]
)的值域是[22,+∞)故為:[22,+∞)12.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:2113.某人從家乘車到單位,途中有3個交通崗?fù)ぃ僭O(shè)在各交通崗遇到紅燈的事件是相互獨立的,且概率都是0.4,則此人上班途中遇紅燈的次數(shù)的期望為()
A.0.4
B.1.2
C.0.43
D.0.6答案:B14.如果消息M發(fā)生的概率為P(M),那么消息M所含的信息量為I(M)=log2[P(M)+],若小明在一個有4排8列座位的小型報告廳里聽報告,則發(fā)布的以下4條消費中,信息量最大的是()
A.小明在第4排
B.小明在第5列
C.小明在第4排第5列
D.小明在某一排答案:C15.如圖,△ABC是圓的內(nèi)接三角形,PA切圓于點A,PB交圓于點D.若∠ABC=60°,PD=1,BD=8,則∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割線定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,316.設(shè)F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內(nèi),若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F(xiàn)2為端點的線段.故選D.17.在極坐標(biāo)系中,曲線ρ=2cosθ所表示圖形的面積為______.答案:將原極坐標(biāo)方程為p=2cosθ,化成:p2=2ρcosθ,其直角坐標(biāo)方程為:∴x2+y2=2x,是一個半徑為1的圓,其面積為π.故填:π.18.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.19.直線kx-y+1=3k,當(dāng)k變動時,所有直線都通過定點()
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C20.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當(dāng)?shù)淖鴺?biāo)系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系.(如圖所示).設(shè)棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設(shè)平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.21.電子跳蚤游戲盤是如圖所示的△ABC,AB=8,AC=9,BC=10,如果跳蚤開始時在BC邊的點P0處,BP0=4.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3=BP2;跳蚤按上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數(shù)),則點P2010與C間的距離為______答案:∵由題意可以發(fā)現(xiàn)每邊各有兩點,其中BC邊上P0,P6,P12…重合,P3,P9,P15…重合,AC邊上P1,P7,P13…重合,P4,P10,P16…重合,AB邊上P2,P8,P14…重合,P5,P11,P17…重合.發(fā)現(xiàn)規(guī)律2010為六的倍數(shù)所以與P0重合,∴與C點之間的距離為6故為:622.若直線x=1的傾斜角為α,則α等于
______.答案:因為直線x=1與y軸平行,所以直線x=1的傾斜角為90°.故為:90°23.如圖所示,正方體的棱長為1,點A是其一棱的中點,則點A在空間直角坐標(biāo)系中的坐標(biāo)是()
A.(,,1)
B.(1,1,)
C.(,1,)
D.(1,,1)
答案:B24.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)
=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.25.半徑為1、2、3的三個圓兩兩外切.證明:以這三個圓的圓心為頂點的三角形是直角三角形.
答案:證明:設(shè)⊙O1、⊙O2、⊙O3的半徑分別為1、2、3.因這三個圓兩兩外切,故有O1O2=1+2=3,O2O3=2+3=5,O1O3=1+3=4,則有O1O22+O1O32=32+42=52=O2O32根據(jù)勾股定理的逆定理,得到△O1O2O3為直角三角形.26.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=______.答案:設(shè)c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.
①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.
②解①②得x=-79,y=-73.故應(yīng)填:(-79,-73).27.如圖,某公司制造一種海上用的“浮球”,它是由兩個半球和一個圓柱筒組成.其中圓柱的高為2米,球的半徑r為0.5米.
(1)這種“浮球”的體積是多少立方米(結(jié)果精確到0.1m3)?
(2)假設(shè)該“浮球”的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元.求該“浮球”的建造費用(結(jié)果精確到1元).答案:(1)∵球的半徑r為0.5米,∴兩個半球的體積之和為V球=43πr3=43π?18=16πm3,∵圓柱的高為2米,∴V圓柱=πr2?h=π×14×2=12πm3,∴該“浮球”的體積是:V=V球+V圓柱=23π≈2.1m3;(2)圓柱筒的表面積為2πrh=2πm2;兩個半球的表面積為4πr2=πm2,∵圓柱形部分每平方米建造費用為20元,半球形部分每平方米建造費用為30元,∴該“浮球”的建造費用為2π×20+π×30=70π≈220元.28.在復(fù)平面內(nèi),記復(fù)數(shù)3+i對應(yīng)的向量為OZ,若向量OZ饒坐標(biāo)原點逆時針旋轉(zhuǎn)60°得到向量OZ所對應(yīng)的復(fù)數(shù)為______.答案:向量OZ饒坐標(biāo)原點逆時針旋轉(zhuǎn)60°得到向量所對應(yīng)的復(fù)數(shù)為(3+i)(cos60°+isin60°)=(3+i)(12+32i)=2i,故為2i.29.若=(2,-3,1)是平面α的一個法向量,則下列向量中能作為平面α的法向量的是()
A.(0,-3,1)
B.(2,0,1)
C.(-2,-3,1)
D.(-2,3,-1)答案:D30.已知數(shù)列{an}前n項的和為Sn,且滿足an=n2
(n∈N*).
(Ⅰ)求s1、s2、s3的值;
(Ⅱ)用數(shù)學(xué)歸納法證明sn=n(n+1)(2n+1)6
(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當(dāng)n=1時,左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設(shè)n=k(k∈N*)時結(jié)論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時,等式也成立.…(13分)根據(jù)(1)(2)可知對任意的正整數(shù)n∈N*都成立.…(14分)31.有3名同學(xué)要爭奪2個比賽項目的冠軍,冠軍獲得者共有______種可能.答案:第一個項目的冠軍有3種情況,第二個項目的冠軍也有3種情況,根據(jù)分步計數(shù)原理,冠軍獲得者共有3×3=9種可能,故為9.32.如圖,菱形ABCD的對角線AC和BD相交于O點,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,求證:E,F(xiàn),G,H四個點在以O(shè)為圓心的同一個圓上.答案:連接OE,OF,OG,OH.∵四邊形ABCD為菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分別為AB、BC、CD、DA的中點,∴OE=OF=OG=OH=12AB,∴E、F、G、H四點在以O(shè)為圓心,12AB為半徑的圓上.33.設(shè)O是正△ABC的中心,則向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共線向量
D.共起點的向量答案:B34.為了檢測某種產(chǎn)品的直徑(單位mm),抽取了一個容量為100的樣本,其頻率分布表(不完整)如下:
分組頻數(shù)累計頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)
(Ⅰ)完成頻率分布表;
(Ⅱ)畫出頻率分布直方圖;
(Ⅲ)據(jù)上述圖表,估計產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性是百分之幾?答案:解(Ⅰ)分組頻數(shù)累計頻數(shù)頻率[10.75,10.85)660.06[10.85,10.95)1590.09[10.95,11.05)30150.15[11.05,11.15)48180.18[11.15,11.25)72240.24[11.25,11.35)84120.12[11.35,11.45)9280.08[11.45,11.55)9860.06[11.55,11.65)10020.02(Ⅲ)0.15+0.18+0.24+0.12=0.69=69%,所以產(chǎn)品直徑落在[10.95,11.35)范圍內(nèi)的可能性為69%.35.(參數(shù)方程與極坐標(biāo))已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2236.參數(shù)方程x=2cosαy=3sinα(a為參數(shù))化成普通方程為______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:參數(shù)方程x=2cosαy=3sinα化成普通方程為:x24+y29=1.故為:x24+y29=1.37.若向量且與的夾角余弦為則λ等于()
A.4
B.-4
C.
D.答案:C38.已知拋物線C:x2=2py(p>0)的焦點為F,拋物線上一點A的橫坐標(biāo)為x1(x1>0),過點A作拋物線C的切線l1交x軸于點D,交y軸于點Q,交直線l:y=p2于點M,當(dāng)|FD|=2時,∠AFD=60°.
(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;
(2)若B位于y軸左側(cè)的拋物線C上,過點B作拋物線C的切線l2交直線l1于點P,交直線l于點N,求△PMN面積的最小值,并求取到最小值時的x1值.答案:(1)設(shè)A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點A,Q,D的坐標(biāo)可知:D為線段AQ的中點,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設(shè)B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯(lián)立y=x22x-x224y=x12x-x214得到點P(x1+x22,x1x24),聯(lián)立y=x12x-x214y=1得到點M(x12+2x1,1).同理N(x22+2x2,1),設(shè)h為點P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2
①設(shè)AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應(yīng)k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當(dāng)t∈(0,33)時,S(t)單調(diào)遞減;當(dāng)t∈(33,+∞)時,S(t)單調(diào)遞增,所以當(dāng)t=33時,S取到最小值為1639,此時b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時的x1值為233.39.平面內(nèi)有n條直線,其中無任何兩條平行,也無任何三條共點,求證:這n條直線把平面分割成12(n2+n+2)塊.答案:證明:(1)當(dāng)n=1時,1條直線把平面分成2塊,又12(12+1+2)=2,命題成立.(2)假設(shè)n=k時,k≥1命題成立,即k條滿足題設(shè)的直線把平面分成12(k2+k+2)塊,那么當(dāng)n=k+1時,第k+1條直線被k條直線分成k+1段,每段把它們所在的平面塊又分成了2塊,因此,增加了k+1個平面塊.所以k+1條直線把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]塊,這說明當(dāng)n=k+1時,命題也成立.由(1)(2)知,對一切n∈N*,命題都成立.40.在平面直角坐標(biāo)系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù))和直線l:x=4t+6y=-3t-2(t為參數(shù)),則直線l與圓C相交所得的弦長等于______.答案:∵在平面直角坐標(biāo)系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù)),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數(shù)),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長=2×52-1=46.故為46.41.正態(tài)曲線下、橫軸上,從均值到+∞的面積為______答案:由正態(tài)曲線的對稱性特點知,曲線與x軸之間的面積為1,所以從均數(shù)到的面積為整個面積的一半,即50%.填:0.5.42.如圖,△ABC中,D,E,F(xiàn)分別是邊BC,AB,CA的中點,在以A、B、C、D、E、F為端點的有向線段中所表示的向量中,
(1)與向量FE共線的有
______.
(2)與向量DF的模相等的有
______.
(3)與向量ED相等的有
______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,F(xiàn)B.43.用數(shù)學(xué)歸納法證明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:證明:①n=1時,左邊=2,右邊=2,等式成立;②假設(shè)n=k時,結(jié)論成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2則n=k+1時,等式左邊=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1時,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立44.下列各個對應(yīng)中,從A到B構(gòu)成映射的是()A.
B.
C.
D.
答案:按照映射的定義,A中的任何一個元素在集合B中都有唯一確定的元素與之對應(yīng).而在選項A和選項B中,前一個集合中的元素2在后一個集合中沒有元素與之對應(yīng),故不符合映射的定義.選項C中,前一個集合中的元素1在后一集合中有2個元素和它對應(yīng),也不符合映射的定義,只有選項D滿足映射的定義,故選D.45.已知△ABC的三個頂點為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長為______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中點為D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故為:2.46.在空間直角坐標(biāo)系中,已知A,B兩點的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標(biāo)分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.47.現(xiàn)有10個保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個名額,分配給7所學(xué)校,每校至少有1個名額,可以轉(zhuǎn)化為10個元素之間有9個間隔,要求分成7份,每份不空;相當(dāng)于用6塊檔板插在9個間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.48.已知關(guān)于x的方程2kx2-2x-3k-2=0的兩實根一個小于1,另一個大于1,求實數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實根一個小于1,另一個大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.49.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是()A.A,B,C三點可以構(gòu)成直角三角形B.A,B,C三點可以構(gòu)成銳角三角形C.A,B,C三點可以構(gòu)成鈍角三角形D.A,B,C三點不能構(gòu)成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點可以構(gòu)成直角三角形,故選A.50.“神六”上天并順利返回,讓越來越多的青少年對航天技術(shù)發(fā)生了興趣.某學(xué)??萍夹〗M在計算機上模擬航天器變軌返回試驗,設(shè)計方案
如圖:航天器運行(按順時針方向)的軌跡方程為x2100+y225=1,變軌(航天器運行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為
對稱軸、M(0,647)為頂點的拋物線的實線部分,降落點為D(8,0),觀測點A(4,0)、B(6,0)同時跟蹤航天器.試問:當(dāng)航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為______時航天器發(fā)出變軌指令.答案:設(shè)曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設(shè)變軌點為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點的坐標(biāo)為(6,4),|AC|=25,|BC|=4.故為:25、4.第2卷一.綜合題(共50題)1.函數(shù)f(x)=x2+ax+3,
(1)若f(1-x)=f(1+x),求a的值;
(2)在第(1)的前提下,當(dāng)x∈[-2,2]時,求f(x)的最值,并說明當(dāng)f(x)取最值時的x的值;
(3)若f(x)≥a恒成立,求a的取值范圍.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的圖象關(guān)于直線x=1對稱∴-a2=1即a=-2(2)a=-2時,函數(shù)f(x)=x2-2x+3在區(qū)間[-2,1]上遞減,在區(qū)間[1,2]上遞增,∴當(dāng)x=-2時,fmax(x)=f(-2)=11當(dāng)x=1時,fmin(x)=f(1)=2(3)∵x∈R時,有x2+ax+3-a≥0恒成立,須△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.2.橢圓x225+y29=1的兩焦點為F1,F(xiàn)2,一直線過F1交橢圓于P、Q,則△PQF2的周長為______.答案:∵a=5,由橢圓第一定義可知△PQF2的周長=4a.∴△PQF2的周長=20.,故為20.3.若A為m×n階矩陣,AB=C,則B的階數(shù)可以是下列中的______.
①m×m,②m×n,③n×m,④n×n.答案:兩個矩陣只有當(dāng)前一個矩陣的列數(shù)與后一個矩陣的行數(shù)相等時,才能作乘法.矩陣A是n列矩陣,故矩陣B是n行的矩陣則B的階數(shù)可以是③n×m,④n×n故為:③④4.若向量=(2,-3,1),=(2,0,3),=(0,2,2),則(+)=()
A.4
B.15
C.7
D.3答案:D5.函數(shù)f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數(shù)f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數(shù)的值域是(0,1],故選B.6.圓(x+3)2+(y-1)2=25上的點到原點的最大距離是()
A.5-
B.5+
C
D.10答案:B7.已知M和N分別是四面體OABC的邊OA,BC的中點,且,若=a,=b,=c,則用a,b,c表示為()
A.
B.
C.
D.
答案:B8.命題“所以奇數(shù)的立方是奇數(shù)”的否定是()
A.所有奇數(shù)的立方不是奇數(shù)
B.不存在一個奇數(shù),它的立方不是奇數(shù)
C.存在一個奇數(shù),它的立方不是奇數(shù)
D.不存在一個奇數(shù),它的立方是奇數(shù)答案:C9.一圓形紙片的圓心為O,點Q是圓內(nèi)異于O點的一個定點,點A是圓周上一動點,把紙片折疊使得點A與點Q重合,然后抹平紙片,折痕CD與OA交于點P,當(dāng)點A運動時,點P的軌跡為()
A.橢圓
B.雙曲線
C.拋物線
D.圓答案:A10.H:x-y+z=2為坐標(biāo)空間中一平面,L為平面H上的一直線.已知點P(2,1,1)為L上距離原點O最近的點,則______為L的方向向量.答案:∵x-y+z=2為坐標(biāo)空間中一平面∴平面的一個法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點O最近的點,∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)11.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設(shè)點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=112.點P從(2,0)出發(fā),沿圓x2+y2=4按逆時針方向運動弧長到達(dá)點Q,則點Q的坐標(biāo)為()
A.(-1,
)
B.(-,
-1)
C.(-1,
-)
D.(-,
1)答案:C13.關(guān)于斜二測畫法畫直觀圖說法不正確的是()
A.在實物圖中取坐標(biāo)系不同,所得的直觀圖有可能不同
B.平行于坐標(biāo)軸的線段在直觀圖中仍然平行于坐標(biāo)軸
C.平行于坐標(biāo)軸的線段長度在直觀圖中仍然保持不變
D.斜二測坐標(biāo)系取的角可能是135°答案:C14.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測,這種抽樣方法是()
A.簡單隨機抽樣
B.系統(tǒng)抽樣
C.分層抽樣
D.其它抽樣方法答案:B15.一圓臺上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點M,拉一條繩子,繞圓臺的側(cè)面一周轉(zhuǎn)到B點,則這條繩子最短長為______cm.答案:畫出圓臺的側(cè)面展開圖,并還原成圓錐展開的扇形,且設(shè)扇形的圓心為O.有圖得:所求的最短距離是MB',設(shè)OA=R,圓心角是α,則由題意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,則MB'=50cm.故為:50cm.16.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)17.已知直線經(jīng)過點A(0,4)和點B(1,2),則直線AB的斜率為()
A.3
B.-2
C.2
D.不存在答案:B18.在數(shù)學(xué)歸納法證明多邊形內(nèi)角和定理時,第一步應(yīng)驗證()
A.n=1成立
B.n=2成立
C.n=3成立
D.n=4成立答案:C19.已知,棱長都相等的正三棱錐內(nèi)接于一個球,某學(xué)生畫出四個過球心的平面截球與正三棱錐所得的圖形,如下圖所示,則
A、以上四個圖形都是正確的
B、只有(2)(4)是正確的
C、只有(4)是錯誤的
D、只有(1)(2)是正確的答案:C20.已知A(1,1),B(2,4),則直線AB的斜率為()
A.1
B.2
C.3
D.4答案:C21.“a=18”是“對任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)“a=18”時,由基本不等式可得:“對任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對任意的正數(shù)x,2x+ax≥1”為真命題;而“對任意的正數(shù)x,2x+ax≥1的”時,可得“a≥18”即“對任意的正數(shù)x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對任意的正數(shù)x,2x+ax≥1的”充分不必要條件故選A22.如圖,在圓錐中,B為圓心,AB=8,BC=6
(1)求出這個幾何體的表面積;
(2)求出這個幾何體的體積.(保留π)答案:圓錐母線AC的長=AB2+BC2=82+62=10(1)表面積=π×62+π×6×10=96π(2)體積=13×π×62×8=96π23.求證:梯形兩條對角線的中點連線平行于上、下底,且等于兩底差的一半(用解析法證之).答案:證明見過程解析:求證:梯形兩條對角線的中點連線平行于上、下底,且等于兩底差的一半(用解析法證之).24.已知向量a與b的夾角為60°,且|a|=1,|b|=2,那么(a+b)2的值為______.答案:由題意可得a?b=|a|?|b|cos<a
,
b>=1×2×cos60°=1.∴(a+b)2=a2+b2+2a?b=1+4+2×1=7.故為:7.25.設(shè)a,b,c是三個不共面的向量,現(xiàn)在從①a+b;②a-b;③a+c;④b+c;⑤a+b+c中選出使其與a,b構(gòu)成空間的一個基底,則可以選擇的向量為______.答案:構(gòu)成基底只要三向量不共面即可,這里只要含有向量c即可,故③④⑤都是可以選擇的.故為:③④⑤(不唯一,也可以有其它的選擇)26.若P(A∪B)=P(A)+P(B)=1,則事件A與事件B的關(guān)系是()
A.互斥事件
B.對立事件
C.不是互斥事件
D.前者都不對答案:D27.給出命題:
①線性回歸分析就是由樣本點去尋找一條貼近這些點的直線;
②利用樣本點的散點圖可以直觀判斷兩個變量的關(guān)系是否可以用線性關(guān)系表示;
③通過回歸方程=bx+a及其回歸系數(shù)b可以估計和預(yù)測變量的取值和變化趨勢;
④線性相關(guān)關(guān)系就是兩個變量間的函數(shù)關(guān)系.其中正確的命題是(
)
A.①②
B.①④
C.①②③
D.①②③④答案:D28.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α29.某學(xué)校為了調(diào)查高三年級的200名文科學(xué)生完成課后作業(yè)所需時間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會的同學(xué)隨機抽取20名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對該年級的文科學(xué)生進(jìn)行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進(jìn)行調(diào)查,則這兩種抽樣的方法依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機抽樣,系統(tǒng)抽樣答案:第一種由學(xué)生會的同學(xué)隨機抽取20名同學(xué)進(jìn)行調(diào)查;這是一種簡單隨機抽樣,第二種由教務(wù)處對該年級的文科學(xué)生進(jìn)行編號,從001到200,抽取學(xué)號最后一位為2的同學(xué)進(jìn)行調(diào)查,對于個體比較多的總體,采用系統(tǒng)抽樣,故選D.30.已知△ABC三個頂點的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個三角形外接圓的方程為(x+2)2+(y-2)2=10.31.已知⊙C1:x2+y2+2x+8y-8=0,⊙C2:x2+y2-4x-4y-2=0,則的位置關(guān)系為()
A.相切
B.相離
C.相交
D.內(nèi)含答案:C32.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問是否存在這樣的實數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.33.設(shè)計一個計算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數(shù)是()
A.13
B.13.5
C.14
D.14.5答案:A34.設(shè)某批電子手表正品率為,次品率為,現(xiàn)對該批電子手表進(jìn)行測試,設(shè)第X次首次測到正品,則P(X=3)等于()
A.
B.
C.
D.答案:C35.在平面直角坐標(biāo)系xOy中,設(shè)P(x,y)是橢圓上的一個動點,則S=x+y的最大值是()
A.1
B.2
C.3
D.4答案:B36.氣象意義上從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度均不低于22
(℃)”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進(jìn)入夏季的地區(qū)有()A.0個B.1個C.2個D.3個答案:①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22,根據(jù)數(shù)據(jù)得出:甲地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)可能為:22,22,24,25,26.其連續(xù)5天的日平均溫度均不低于22.
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24.根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.③丙地:5個數(shù)據(jù)中有一個數(shù)據(jù)是32,總體均值為26,根據(jù)其總體均值為24可知其連續(xù)5天的日平均溫度均不低于22.則肯定進(jìn)入夏季的地區(qū)有甲、乙、丙三地.故選D.37.(1+2x)6的展開式中x4的系數(shù)是______.答案:展開式的通項為Tr+1=2rC6rxr令r=4得展開式中x4的系數(shù)是24C64=240故為:24038.若對n個向量a1,a2,…,an,存在n個不全為零的實數(shù)k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關(guān)”.依此規(guī)定,請你求出一組實數(shù)k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.k1,k2,k3的值分別是______(寫出一組即可).答案:設(shè)a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.則存在實數(shù),k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,139.若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(biāo),則點P落在圓x2+y2=16內(nèi)的概率是______.答案:由題意知,本題是一個古典概型,試驗發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(biāo),共有6×6=36種結(jié)果,而滿足條件的事件是點P落在圓x2+y2=16內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式得到P=836=29,故為:2940.把矩陣變?yōu)楹?,與對應(yīng)的值是()
A.
B.
C.
D.答案:C41.位于直角坐標(biāo)原點的一個質(zhì)點P按下列規(guī)則移動:質(zhì)點每次移動一個單位,移動的方向向左或向右,并且向左移動的概率為,向右移動的概率為,則質(zhì)點P移動五次后位于點(1,0)的概率是()
A.
B.
C.
D.答案:D42.為了調(diào)查上海市中學(xué)生的身體狀況,在甲、乙兩所學(xué)校中各隨意抽取了
100名學(xué)生,測試引體向上,結(jié)果如下表所示:
(1)甲乙兩校被測學(xué)生引體向上的平均數(shù)分別是:甲校______個,乙校______個.
(2)若5個以下(不含5個)為不合格,則甲乙兩校的合格率分別為甲校______
乙校______
(3)若15個以上(含15個)為優(yōu)秀,則甲乙兩校中優(yōu)秀率______校較高(填“甲”或“乙”)
(4)用你所學(xué)的統(tǒng)計知識對兩所學(xué)校學(xué)生的身體狀況作一個比較.你的結(jié)論是______.答案:(1)甲校被測學(xué)生引體向上的平均數(shù)是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被測學(xué)生引體向上的平均數(shù)是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中優(yōu)秀率=9+6100×100%=15%,乙校中優(yōu)秀率=8+6100×100%=14%,所以甲校較高;(4)雖然合格率相等,但是乙校平均數(shù)更高一些,所以乙校更好一些.故為:8.3,9.19,94%,94%,乙校更好一些43.已知||=2,||=,∠AOB=150°,點C在∠AOB內(nèi),且∠AOC=30°,設(shè)(m,n∈R),則=()
A.
B.
C.
D.答案:B44.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的(
)
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C45.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C46.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為______.答案:∵當(dāng)(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為k≠±1.故為:k≠±1.47.直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量,則a=______.答案:∵直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量∴兩條直線互相平行,可得a2=2a≠3-1,解之得a=±2故為:±248.如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p、q分別是M到直線l1和l2的距離,則稱有序非負(fù)實數(shù)對(p,q)是點M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且僅有1個;
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有2個;
③若pq≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有4個.
上述命題中,正確命題的個數(shù)是()A.0B.1C.2D.3答案:①正確,此點為點O;②不正確,注意到p,q為常數(shù),由p,q中必有一個為零,另一個非零,從而可知有且僅有4個點,這兩點在其中一條直線上,且到另一直線的距離為q(或p);③正確,四個交點為與直線l1相距為p的兩條平行線和與直線l2相距為q的兩條平行線的交點;故選C.49.已知100件產(chǎn)品中有5件次品,從中任意取出3件產(chǎn)品,設(shè)A表示事件“3件產(chǎn)品全不是次品”,B表示事件“3件產(chǎn)品全是次品”,C表示事件“3件產(chǎn)品中至少有1件次品”,則下列結(jié)論正確的是()
A.B與C互斥
B.A與C互斥
C.任意兩個事件均互斥
D.任意兩個事件均不互斥答案:B50.學(xué)校成員、教師、后勤人員、理科教師、文科教師的結(jié)構(gòu)圖正確的是()
A.
B.
C.
D.
答案:A第3卷一.綜合題(共50題)1.某飲料公司招聘了一名員工,現(xiàn)對其進(jìn)行一項測試,以便確定工資級別.公司準(zhǔn)備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定位3500元;若4杯選對3杯,則月工資定為2800元,否則月工資定為2100元,今X表示此人選對A飲料的杯數(shù),假設(shè)此人對A和B兩種飲料沒有鑒別能力.
(1)求X的分布列;
(2)求此員工月工資的期望.答案:(1)X的所有可能取值為0,1,2,3,4,P(X=0)=1C48=170P(X=1)=C14C34C48=1670P(X=2)=C24C24C48=3670P(X=3)=C14C34C48=1670P(X=4)=1C48=170(2)此員工月工資Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)=1C48=170P(Y=2800)=P(X=3)=C14C34C48=1670P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=5370EY=3500×170+2800×1670+2100×5370=22802.(1+2x)7的展開式中第4項的系數(shù)是______
(用數(shù)字作答)答案:(1+2x)7的展開式的通項為Tr+1=Cr7?(2x)r∴(1+2x)7的展開式中第4項的系數(shù)是C37?23=280,故為:280.3.已知直線l:x=2+ty=1-at(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點.
(1)若A,B的中點為P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一個三等分點,求直線l的直角坐標(biāo)方程.答案:(1)直線l:x=2+ty=1-at代入橢圓方程,整理得(4a2+1)t2-4(2a-1)t-8=0設(shè)A、B對應(yīng)的參數(shù)分別為t1、t2,則t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中點為P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一個三等分點,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,?t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t
22=-84a2+1,∴t
22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直線l的直角坐標(biāo)方程y-1=4±76(x-2).4.Rt△ABC的直角邊AB在平面α內(nèi),頂點C在平面α外,則直角邊BC、斜邊AC在平面α上的射影與直角邊AB組成的圖形是()
A.線段或銳角三角形
B.線段與直角三角形
C.線段或鈍角三角形
D.線段、銳角三角形、直角三角形或鈍角三角形答案:B5.在下列條件中,使M與不共線三點A、B、C,一定共面的是
[
]答案:C6.點A(-,1)關(guān)于y軸的對稱點A′的坐標(biāo)為(
)
A.(-,-1)
B.(,-1)
C.(-,1)
D.(,1)答案:D7.一個總體中有100個個體,隨機編號為0,1,2,3,…,99,依編號順序平均分成10個小組,組號依次為1,2,3,…10.現(xiàn)用系統(tǒng)抽樣方法抽取一個容量為10的樣本,規(guī)定如果在第1組隨機抽取的號碼為m,那么在第k組中抽取的號碼個位數(shù)字與m+k號碼的個位數(shù)字相同,若m=6,則在第7組中抽取的號碼是()
A.66
B.76
C.63
D.73答案:C8.一名同學(xué)先后投擲一枚骰子兩次,第一次向上的點數(shù)記為x,第二次向上的點數(shù)記為y,在直角坐標(biāo)系xOy中,以(x,y)為坐標(biāo)的點落在直線2x+y=8上的概率為()A.16B.112C.536D.19答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的事件是先后擲兩次骰子,共有6×6=36種結(jié)果,滿足條件的事件是(x,y)為坐標(biāo)的點落在直線2x+y=8上,當(dāng)x=1,y=6;x=2,y=4;x=3,y=2,共有3種結(jié)果,∴根據(jù)古典概型的概率公式得到P=336=112,故選B.9.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,則實數(shù)λ等于()
A.
B.
C.
D.答案:D10.設(shè)
是不共線的向量,(k,m∈R),則A、B、C三點共線的充要條件是()
A.k+m=0
B.k=m
C.km+1=0
D.km-1=0答案:D11.如圖,AB,AC分別是⊙O的切線和割線,且∠C=45°,∠BDA=60°,CD=6,則切線AB的長是______.答案:過點A作AM⊥BD與點M.∵AB為圓O的切線∴∠ABD=∠C=45°∵∠BDA=60°∴∠BAD=75°,∠DAM=30°,∠BAM=45°設(shè)AB=x,則AM=22x,在直角△AMD中,AD=63x由切割線定理得:AB2=AD?ACx2=63x(63x+6)解得:x1=6,x2=0(舍去)故AB=6.故是:6.12.如果方程x2+(m-1)x+m2-2=0的兩個實根一個小于1,另一個大于1,那么實數(shù)m的取值范圍是()
A.
B.(-2,0)
C.(-2,1)
D.(0,1)答案:C13.若平面向量a與b的夾角為120°,a=(2,0),|b|=1,則|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a
2+4a?b+4
b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故為:214.已知等差數(shù)列{an}的前n項和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點共線(該直線不過點O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點共線,則a100+a101=1,等差數(shù)列前n項的和為Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故為100.15.以雙曲線x24-y216=1的右焦點為圓心,且被其漸近線截得的弦長為6的圓的方程為______.答案:雙曲線x24-y216=1的右焦點為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.16.將函數(shù)="2x"+1的圖像按向量平移得函數(shù)=的圖像則
A=(1)B=(1,1)C=()
D(1,1)答案:C解析:分析:本小題主要考查函數(shù)圖象的平移與向量的關(guān)系問題.依題由函數(shù)y=2x+1的圖象得到函數(shù)y=2x+1的圖象,需將函數(shù)y=2x+1的圖象向左平移1個單位,向下平移1個單位;故=(-1,-1).解:設(shè)=(h,k)則函數(shù)y=2x+1的圖象平移向量后所得圖象的解析式為y=2x-h+1+k∴∴∴=(-1,-1)故答案為:C.17.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運會開幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個年齡段中抽查了8人,那么x為()
A.90
B.120
C.180
D.200答案:D18.已知三點A(1,2),B(2,-1),C(2,2),E,F(xiàn)為線段BC的三等分點,則AE?AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE?AF=1×1+(-2)×(-1)=3.故為:319.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.20.在△ABC中,AB=2,AC=1,D為BC的中點,則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.21.用反證法證明命題:“三角形三個內(nèi)角至少有一個不大于60°”時,應(yīng)假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,先把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的反面,而命題:“三角形三個內(nèi)角至少有一個不大于60°”的否定為“三個內(nèi)角都大于60°”,故為三個內(nèi)角都大于60°.22.命題“所以奇數(shù)的立方是奇數(shù)”的否定是()
A.所有奇數(shù)的立方不是奇數(shù)
B.不存在一個奇數(shù),它的立方不是奇數(shù)
C.存在一個奇數(shù),它的立方不是奇數(shù)
D.不存在一個奇數(shù),它的立方是奇數(shù)答案:C23.若向量且與的夾角余弦為則λ等于()
A.4
B.-4
C.
D.答案:C24.函數(shù)f(x)=x2+ax+3,
(1)若f(1-x)=f(1+x),求a的值;
(2)在第(1)的前提下,當(dāng)x∈[-2,2]時,求f(x)的最值,并說明當(dāng)f(x)取最值時的x的值;
(3)若f(x)≥a恒成立,求a的取值范圍.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的圖象關(guān)于直線x=1對稱∴-a2=1即a=-2(2)a=-2時,函數(shù)f(x)=x2-2x+3在區(qū)間[-2,1]上遞減,在區(qū)間[1,2]上遞增,∴當(dāng)x=-2時,fmax(x)=f(-2)=11當(dāng)x=1時,fmin(x)=f(1)=2(3)∵x∈R時,有x2+ax+3-a≥0恒成立,須△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.25.在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.6,則ξ在(0,1)內(nèi)取值的概率為()
A.0.1
B.0.2
C.0.3
D.0.4答案:C26.雙曲線的實軸長和焦距分別為()
A.
B.
C.
D.答案:C27.編號為A、B、C、D、E的五個小球放在如圖所示的五個盒子中,要求每個盒子只能放一個小球,且A不能放1,2號,B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據(jù)題意,A不能放1,2號,則A可以放在3、4、5號盒子,分2種情況討論:①當(dāng)A在4、5號盒子時,B有1種放法,剩下3個有A33=6種不同放法,此時,共有2×1×6=12種情況;②當(dāng)A在3號盒子時,B有3種放法,剩下3個有A33=6種不同放法,此時,共有1×3×6=18種情況;由加法原理,計算可得共有12+18=30種不同情況;故選C.28.在空間直角坐標(biāo)系中,點,過點P作平面xOy的垂線PQ,則Q的坐標(biāo)為()
A.
B.
C.
D.答案:D29.用數(shù)學(xué)歸納法證明不等式成立,起始值至少應(yīng)取為()
A.7
B.8
C.9
D.10答案:B30.直角坐標(biāo)xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()
A.25個
B.36個
C.100個
D.225個答案:D31.平面內(nèi)有n條直線,其中無任何兩條平行,也無任何三條共點,求證:這n條直線把平面分割成12(n2+n+2)塊.答案:證明:(1)當(dāng)n=1時,1條直線把平面分成2塊,又12(12+1+2)=2,命題成立.(2)假設(shè)n=k時,k≥1命題成立,即k條滿足題設(shè)的直線把平面分成12(k2+k+2)塊,那么當(dāng)n=k+1時,第k+1條直線被k條直線分成k+1段,每段把它們所在的平面塊又分成了2塊,因此,增加了k+1個平面塊.所以k+1條直線把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]塊,這說明當(dāng)n=k+1時,命題也成立.由(1)(2)知,對一切n∈N*,命題都成立.32.把矩陣變?yōu)楹?,與對應(yīng)的值是()
A.
B.
C.
D.答案:C33.已知實數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點到原點的距離的最小值,轉(zhuǎn)化為坐標(biāo)原點到直線2x+y+5=0的距離,d=522+1=5.故選A.34.某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下一組數(shù)據(jù):
x24568y3040605070若y與x之間的關(guān)系符合回歸直線方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y關(guān)于x的線性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.35.若向量a、b的夾角為150°,|a|=3,|b|=4,則|2a+b|=______.答案:|2a+b|=(2a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)員工福利健康飲食計劃設(shè)計
- 企業(yè)如何借鑒兒童習(xí)慣提升員工福利
- 創(chuàng)新驅(qū)動打造智能LED手電筒新紀(jì)元
- 兒童安全用藥家庭藥品清單及注意事項
- 利用實驗教學(xué)培養(yǎng)學(xué)生的創(chuàng)新思維能力
- 利用現(xiàn)代科技構(gòu)建食堂衛(wèi)生體系
- 辦公健康計劃中的家庭式臥床病人鍛煉策略
- 失眠障礙的西醫(yī)治療指南及中醫(yī)治療
- 2024年雙氰胺項目規(guī)劃申請報告
- 2024年無線接入網(wǎng)用的手機項目立項申請報告模稿
- GB/T 37779-2019數(shù)據(jù)中心能源管理體系實施指南
- GB/T 32960.1-2016電動汽車遠(yuǎn)程服務(wù)與管理系統(tǒng)技術(shù)規(guī)范第1部分:總則
- GB/T 12706.3-2020額定電壓1 kV(Um=1.2 kV)到35 kV(Um=40.5 kV)擠包絕緣電力電纜及附件第3部分:額定電壓35 kV(Um=40.5 kV)電纜
- 工資發(fā)放承諾書3篇(完整版)
- GB 1886.339-2021食品安全國家標(biāo)準(zhǔn)食品添加劑焦磷酸鈉
- 幼兒園戲劇課件
- 醬香型白酒生產(chǎn)工藝課件
- 小學(xué)主題班會優(yōu)秀教案《我鍛煉-我健康-我快樂》
- 浦發(fā)銀行個人信用報告異議申請表
- 《證券期貨經(jīng)營機構(gòu)及其工作人員廉潔從業(yè)規(guī)定》解讀 100分
- 員工心理健康培訓(xùn)課件
評論
0/150
提交評論