2023年烏蘭察布醫(yī)學(xué)高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年烏蘭察布醫(yī)學(xué)高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年烏蘭察布醫(yī)學(xué)高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年烏蘭察布醫(yī)學(xué)高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年烏蘭察布醫(yī)學(xué)高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年烏蘭察布醫(yī)學(xué)高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))的普通方程為______.答案:把參數(shù)方程x=sin2θy=cosθ+sinθ(θ為參數(shù))利用同角三角函數(shù)的基本關(guān)系消去參數(shù)化為普通方程為y2=1+x,故為y2=1+x.2.5本不同的書全部分給3個(gè)學(xué)生,每人至少一本,共有()種分法.

A.60

B.150

C.300

D.210答案:B3.例3.設(shè)a>0,b>0,解關(guān)于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化為ax-2≥bx或ax-2≤-bx,(1)對(duì)于不等式ax-2≤-bx,即(a+b)x≤2

因?yàn)閍>0,b>0即:x≤2a+b.(2)對(duì)于不等式ax-2≥bx,即(a-b)x≥2①當(dāng)a>b>0時(shí),由①得x≥2a-b,∴此時(shí),原不等式解為:x≥2a-b或x≤2a+b;當(dāng)a=b>0時(shí),由①得x∈?,∴此時(shí),原不等式解為:x≤2a+b;當(dāng)0<a<b時(shí),由①得x≤2a-b,∴此時(shí),原不等式解為:x≤2a+b.綜上可得,當(dāng)a>b>0時(shí),原不等式解集為(-∞,2a+b]∪[2a-b,+∞),當(dāng)0<a≤b時(shí),原不等式解集為(-∞,2a+b].4.雙曲線的中心在坐標(biāo)原點(diǎn),離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),則此雙曲線的漸近線方程是______.答案:∵離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),∴ca=2,

c=2且焦點(diǎn)在x軸上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以雙曲線的漸進(jìn)方程為y=±3x.故為y=±3x5.某同學(xué)參加科普知識(shí)競賽,需回答三個(gè)問題,競賽規(guī)則規(guī)定:答對(duì)第一、二、三個(gè)問題分別得100分、100分、200分,答錯(cuò)得0分,假設(shè)這位同學(xué)答對(duì)第一、二、三個(gè)問題的概率分別為0.8、0.7、0.6,且各題答對(duì)與否相互之間沒有影響,則這名同學(xué)得300分的概率為

;這名同學(xué)至少得300分的概率為

.答案:0.228;0.564解析:得300分可能是答對(duì)第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對(duì)4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。6.已知一次函數(shù)f(x)=4x+3,且f(ax+b)=8x+7,則a-b=______.答案:∵f(x)=4x+3,f(ax+b)=4(ax+b)+3=4ax+4b+3=8x+7,∴4a=84b+3=7,解得a=2,b=1,∴a-b=1.故為:1.7.命題“若b≠3,則b2≠9”的逆命題是______.答案:根據(jù)“若p則q”的逆命題是“若q則p”,可得命題“若b≠3,則b2≠9”的逆命題是若b2≠9,則b≠3.故為:若b2≠9,則b≠3.8.命題“所以奇數(shù)的立方是奇數(shù)”的否定是()

A.所有奇數(shù)的立方不是奇數(shù)

B.不存在一個(gè)奇數(shù),它的立方不是奇數(shù)

C.存在一個(gè)奇數(shù),它的立方不是奇數(shù)

D.不存在一個(gè)奇數(shù),它的立方是奇數(shù)答案:C9.如果一個(gè)直角三角形的兩條邊長分別是6和8,另一個(gè)與它相似的直角三角形邊長分別是4和3及x,那么x的值的個(gè)數(shù)為()

A.1個(gè)

B.2個(gè)

C.2個(gè)以上但有限

D.無數(shù)個(gè)答案:B10.能較好地反映一組數(shù)據(jù)的離散程度的是()

A.眾數(shù)

B.平均數(shù)

C.標(biāo)準(zhǔn)差

D.極差答案:C11.設(shè)全集U={1,2,3,4,5},A∩C∪B={1,2},則集合C∪A∩B的所有子集個(gè)數(shù)最多為()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴當(dāng)集合C∪A∩B的所有子集個(gè)數(shù)最多時(shí),集合B中最多有三個(gè)元素:3,4,5,且A∩B=?,作出文氏圖∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集個(gè)數(shù)為:23=8.故選D.12.投擲一個(gè)質(zhì)地均勻的、每個(gè)面上標(biāo)有一個(gè)數(shù)字的正方體玩具,它的六個(gè)面中,有兩個(gè)面標(biāo)的數(shù)字是0,兩個(gè)面標(biāo)的數(shù)字是2,兩個(gè)面標(biāo)的數(shù)字是4,將此玩具連續(xù)拋擲兩次,以兩次朝上一面出現(xiàn)的數(shù)字分別作為點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)

(1)求點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率;

(2)若以落在區(qū)域C上的所有點(diǎn)為頂點(diǎn)作面積最大的多邊形區(qū)域M,在區(qū)域C上隨機(jī)撒一粒豆子,求豆子落在區(qū)域M上的概率.答案:(1)點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4),共9種,其中落在區(qū)域C:x2+y2≤10上的點(diǎn)P的坐標(biāo)有:(0,0),(0,2),(2,0),(2,2),共4種D、故點(diǎn)P落在區(qū)域C:x2+y2≤10內(nèi)的概率為49.(2)區(qū)域M為一邊長為2的正方形,其面積為4,區(qū)域C的面積為10π,則豆子落在區(qū)域M上的概率為25π.13.已知a、b、c為某一直角三角形的三條邊長,c為斜邊.若點(diǎn)(m,n)在直線ax+by+2c=0上,則m2+n2的最小值是______.答案:根據(jù)題意可知:當(dāng)(m,n)運(yùn)動(dòng)到原點(diǎn)與已知直線作垂線的垂足位置時(shí),m2+n2的值最小,由三角形為直角三角形,且c為斜邊,根據(jù)勾股定理得:c2=a2+b2,所以原點(diǎn)(0,0)到直線ax+by+2c=0的距離d=|0+0+2c|a2+b2=2,則m2+n2的最小值為4.故為:4.14.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D15.將參數(shù)方程化為普通方程為(

A.y=x-2

B.y=x+2

C.y=x-2(2≤x≤3)

D.y=x+2(0≤y≤1)答案:C16.在半徑為1的圓內(nèi)任取一點(diǎn),以該點(diǎn)為中點(diǎn)作弦,則所做弦的長度超過3的概率是()A.15B.14C.13D.12答案:如圖,C是弦AB的中點(diǎn),在直角三角形AOC中,AC=12AB=32,OA=1,∴OC=12.∴符合條件的點(diǎn)必須在半徑為12圓內(nèi),則所做弦的長度超過3的概率是P=S小圓S大圓=(12)2ππ=14.故選B.17.若將方程|(x-4)2+y2-(x+4)2+y2|=6化簡為x2a2-y2b2=1的形式,則a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示點(diǎn)(x,y)到(4,0),(-4,0)兩點(diǎn)距離差的絕對(duì)值為6,∴軌跡為以(4,0),(-4,0)為焦點(diǎn)的雙曲線,方程為x29-y27=1∴a2-b2=2故為:218.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且滿足1對(duì)應(yīng)的元素是4,則這樣的映射有()A.2個(gè)B.4個(gè)C.8個(gè)D.9個(gè)答案:∵滿足1對(duì)應(yīng)的元素是4,集合A中還有兩個(gè)元素2和3,2可以和4對(duì)應(yīng),也可以和5對(duì)應(yīng),3可以和4對(duì)應(yīng),也可以和5對(duì)應(yīng),每個(gè)元素有兩種不同的對(duì)應(yīng),∴共有2×2=4種結(jié)果,故選B.19.已知點(diǎn)P的坐標(biāo)為(3,4,5),試在空間直角坐標(biāo)系中作出點(diǎn)P.答案:由P(3,4,5)可知點(diǎn)P在Ox軸上的射影為A(3,0,0),在Oy軸上射影為B(0,4,0),以O(shè)A,OB為鄰邊的矩形OACB的頂點(diǎn)C是點(diǎn)P在xOy坐標(biāo)平面上的射影C(3,4,0).過C作直線垂直于xOy坐標(biāo)平面,并在此直線的xOy平面上方截取5個(gè)單位,得到的就是點(diǎn)P.20.方程組的解集是()

A.{-1,2}

B.(-1,2)

C.{(-1,2)}

D.{(x,y)|x=-1或y=2}答案:C21.已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.22.為了調(diào)查上海市中學(xué)生的身體狀況,在甲、乙兩所學(xué)校中各隨意抽取了

100名學(xué)生,測試引體向上,結(jié)果如下表所示:

(1)甲乙兩校被測學(xué)生引體向上的平均數(shù)分別是:甲校______個(gè),乙校______個(gè).

(2)若5個(gè)以下(不含5個(gè))為不合格,則甲乙兩校的合格率分別為甲校______

乙校______

(3)若15個(gè)以上(含15個(gè))為優(yōu)秀,則甲乙兩校中優(yōu)秀率______校較高(填“甲”或“乙”)

(4)用你所學(xué)的統(tǒng)計(jì)知識(shí)對(duì)兩所學(xué)校學(xué)生的身體狀況作一個(gè)比較.你的結(jié)論是______.答案:(1)甲校被測學(xué)生引體向上的平均數(shù)是=6×3+15×5+44×8+20×11+9×5+6×20100=8.3,乙校被測學(xué)生引體向上的平均數(shù)是=6×3+11×5+51×8+18×11+8×15+6×20100=9.19;(2)甲校的合格率=15+44+20+9+6100×100%=94%,乙校的合格率=11+51+18+8+6100×100%=94%;(3)甲校中優(yōu)秀率=9+6100×100%=15%,乙校中優(yōu)秀率=8+6100×100%=14%,所以甲校較高;(4)雖然合格率相等,但是乙校平均數(shù)更高一些,所以乙校更好一些.故為:8.3,9.19,94%,94%,乙校更好一些23.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B24.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD=______cm.答案:∵易知AB=32+42=5,又由切割線定理得BC2=BD?AB,∴42=BD?5∴BD=165.故為:16525.一條直線的傾斜角的余弦值為32,則此直線的斜率為()A.3B.±3C.33D.±33答案:設(shè)直線的傾斜角為α,∵α∈[0,π),cosα=32∴α=π6因此,直線的斜率k=tanα=33故選:C26.利用斜二測畫法能得到的()

①三角形的直觀圖是三角形;

②平行四邊形的直觀圖是平行四邊形;

③正方形的直觀圖是正方形;

④菱形的直觀圖是菱形.

A.①②

B.①

C.③④

D.①②③④答案:A27.3i(1+i)2的虛部等于______.答案:3i(1+i)2=2,所以其虛部等于0,故為028.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設(shè)與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.29.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于______.答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10∴|a+3b|=10故為1030.某校在檢查學(xué)生作業(yè)時(shí),抽出每班學(xué)號(hào)尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運(yùn)用的抽樣方法是()

A.分層抽樣

B.抽簽抽樣

C.隨機(jī)抽樣

D.系統(tǒng)抽樣答案:D31.向面積為S的△ABC內(nèi)任投一點(diǎn)P,則△PBC的面積小于S2的概率為______.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因?yàn)殛幱安糠值拿娣e是整個(gè)三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.32.已知x,y之間的一組數(shù)據(jù):x1.081.121.191.28y2.252.372.402.55y與x之間的線性性回歸方y(tǒng)=bx+a必過定點(diǎn)______.答案:回歸直線方程一定過樣本的中心點(diǎn)(.x,.y),.x=1.08+1.12+1.19+1.284=1.1675,

.y=2.25+2.37+2.40+2.554=2.3925,∴樣本中心點(diǎn)是(1.1675,2.3925),故為(1.1675,2.3925).33.已知點(diǎn)G是△ABC的重心,過G作直線與AB,AC兩邊分別交于M,N兩點(diǎn),且,則的值()

A.3

B.

C.2

D.答案:B34.設(shè)二項(xiàng)式(33x+1x)n的展開式的各項(xiàng)系數(shù)的和為P,所有二項(xiàng)式系數(shù)的和為S,若P+S=272,則n=()A.4B.5C.6D.8答案:根據(jù)題意,對(duì)于二項(xiàng)式(33x+1x)n的展開式的所有二項(xiàng)式系數(shù)的和為S,則S=2n,令x=1,可得其展開式的各項(xiàng)系數(shù)的和,即P=4n,結(jié)合題意,有4n+2n=272,解可得,n=4,故選A.35.在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為有理數(shù)的點(diǎn)稱為有理點(diǎn).試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過點(diǎn)M(2,1),則此直線不能經(jīng)過兩個(gè)有理點(diǎn).答案:證明:假設(shè)此直線上有兩個(gè)有理點(diǎn)A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數(shù),則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數(shù)經(jīng)過四則運(yùn)算后還是有理數(shù),故k為有理數(shù).又由y1=kx1+b知,b也是有理數(shù).又∵點(diǎn)M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無理數(shù),右端為有理數(shù),顯然矛盾,故此直線不能經(jīng)過兩個(gè)有理點(diǎn).36.某自動(dòng)化儀表公司組織結(jié)構(gòu)如圖所示,其中采購部的直接領(lǐng)導(dǎo)是()

A.副總經(jīng)理(甲)

B.副總經(jīng)理(乙)

C.總經(jīng)理

D.董事會(huì)

答案:B37.已知拋物線y2=4x上兩定點(diǎn)A、B分別在對(duì)稱軸兩側(cè),F(xiàn)為焦點(diǎn),且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點(diǎn)P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點(diǎn)A在第一象限,B點(diǎn)在第四象限.如圖.拋物線的焦點(diǎn)F(1,0),點(diǎn)A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設(shè)在拋物線AOB這段曲線上任一點(diǎn)P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點(diǎn)P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0

24+y0-4|5=|12(y0+1)2-92|5

…(9分)所以當(dāng)y0=-1時(shí),d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274

…(11分)此時(shí)P點(diǎn)坐標(biāo)為(14,-1).…(12分).38.在極坐標(biāo)系中,圓ρ=2cosθ與方程θ=(ρ>0)所表示的圖形的交點(diǎn)的極坐標(biāo)是(

A.(1,1)

B.(1,)

C.(,)

D.(,)答案:C39.已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)M滿足|MA-MB|=4,則動(dòng)點(diǎn)M的軌跡為______.答案:動(dòng)點(diǎn)M滿足|MA-MB|=4=|AB|,結(jié)合圖形思考判斷動(dòng)點(diǎn)M的軌跡為直線AB(不包括線段AB內(nèi)部的點(diǎn))上的兩條射線.故為直線AB(不包括線段AB內(nèi)部的點(diǎn))上的兩條射線.40.在邊長為1的正方形中,有一個(gè)封閉曲線圍成的陰影區(qū)域,在正方形中隨機(jī)的撒入100粒豆子,恰有60粒落在陰影區(qū)域內(nèi),那么陰影區(qū)域的面積為______.

答案:設(shè)陰影部分的面積為x,由概率的幾何概型知,則60100=x1,解得x=35.故為:35.41.每一噸鑄鐵成本y

(元)與鑄件廢品率x%建立的回歸方程y=56+8x,下列說法正確的是()A.廢品率每增加1%,成本每噸增加64元B.廢品率每增加1%,成本每噸增加8%C.廢品率每增加1%,成本每噸增加8元D.如果廢品率增加1%,則每噸成本為56元答案:∵回歸方程y=56+8x,∴當(dāng)x增加一個(gè)單位時(shí),對(duì)應(yīng)的y要增加8個(gè)單位,這里是平均增加8個(gè)單位,故選C.42.四支足球隊(duì)爭奪冠、亞軍,不同的結(jié)果有()

A.8種

B.10種

C.12種

D.16種答案:C43.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機(jī)地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機(jī)地抽取4只的總數(shù)為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數(shù)分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B44.已知向量a與b的夾角為60°,且|a|=1,|b|=2,那么(a+b)2的值為______.答案:由題意可得a?b=|a|?|b|cos<a

,

b>=1×2×cos60°=1.∴(a+b)2=a2+b2+2a?b=1+4+2×1=7.故為:7.45.某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒有被排在一起的演講的順序”可通過如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個(gè)對(duì)象與其它班的5位同學(xué)共6個(gè)對(duì)象排成一列,有A66種方法;③在以上6個(gè)對(duì)象所排成一列的7個(gè)間隙(包括兩端的位置)中選2個(gè)位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計(jì)數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.46.如圖的矩形,長為5,寬為2,在矩形內(nèi)隨機(jī)地撒300顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為138顆,則我們可以估計(jì)出陰影部分的面積為

______.答案:根據(jù)題意:黃豆落在陰影部分的概率是138300矩形的面積為10,設(shè)陰影部分的面積為s則有s10=138300∴s=235故為:23547.橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,兩頂點(diǎn)分別是(3,0),(0,2),則此橢圓的方程是______.答案:依題意,此橢圓方程為標(biāo)準(zhǔn)方程,且焦點(diǎn)在x軸上,設(shè)為x2a2+y2b2=1∵橢圓的兩頂點(diǎn)分別是(3,0),(0,2),∴a=3,b=2∵∴此橢圓的標(biāo)準(zhǔn)方程為:x29+y22=1.故為:x29+y22=1.48.若函數(shù)y=f(x)的定義域是[2,4],則y=f(log12x)的定義域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函數(shù)y=f(x)的定義域是[2,4],∴y=f(t)的定義域也為[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函數(shù)的定義域即解析式中自變量的取值范圍,∴y=f(log12x)的定義域?yàn)?16≤x≤14,即:[116,14].故選C.49.圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ.

(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)求經(jīng)過圓O1,圓O2交點(diǎn)的直線的直角坐標(biāo)方程.答案:以有點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.所以x2+y2=4x.即x2+y2-4x=0為圓O1的直角坐標(biāo)方程.….(3分)同理x2+y2+4y=0為圓O2的直角坐標(biāo)方程.….(6分)(2)由x2+y2-4x=0x2+y2+4y=0解得x1=0y1=0x2=2y2=-2.即圓O1,圓O2交于點(diǎn)(0,0)和(2,-2).過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.…(10分)50.長方體的共頂點(diǎn)的三個(gè)側(cè)面面積分別為3,5,15,則它的體積為______.答案:設(shè)長方體過同一頂點(diǎn)的三條棱長分別為a,b,c,∵從長方體一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積分別為3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即長方體的體積為15,故為:15.第2卷一.綜合題(共50題)1.下列語句不屬于基本算法語句的是()

A.賦值語句

B.運(yùn)算語句

C.條件語句

D.循環(huán)語句答案:B2.設(shè)函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x0=5,且對(duì)任意自然數(shù)均有xn+1=f(xn),則x2004的值為()

A.1B.2C.4D.5答案:由于函數(shù)f(x)定義如下表:故數(shù)列{xn}滿足:5,2,1,4,5,2,1,…是一個(gè)周期性變化的數(shù)列,周期為:4.∴x2004=x0=5.故選D.3.對(duì)某種花卉的開放花期追蹤調(diào)查,調(diào)查情況如表:

花期(天)11~1314~1617~1920~22個(gè)數(shù)20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個(gè),花期平均為15天的有40個(gè),花期平均為18天的有30個(gè),花期平均為21天的有10個(gè),∴這種花卉的評(píng)價(jià)花期是12×20+15×40+18×30+21×10100=16,故為:164.半徑分別為1和2的兩圓外切,作半徑為3的圓與這兩圓均相切,一共可作()個(gè).

A.2

B.3

C.4

D.5答案:D5.高二年級(jí)某班有男生36人,女生28人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)是()A.36B.28C.64D.1008答案:高二年級(jí)某班有男生36人,女生28人,即共有64人,從中任選一位同學(xué)為數(shù)學(xué)科代表,則不同選法的種數(shù)64,故選C.6.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi),任取2個(gè)球,那么下面互斥而不對(duì)立的兩個(gè)事件是()

A.恰有1個(gè)白球;恰有2個(gè)白球

B.至少有1個(gè)白球;都是白球

C.至少有1個(gè)白球;

至少有1個(gè)紅球

D.至少有1個(gè)白球;

都是紅球答案:A7.方程x2+y2=1(xy<0)的曲線形狀是()

A.

B.

C.

D.

答案:C8.如圖:已知圓上的弧

AC=

BD,過C點(diǎn)的圓的切線與BA的延長線交于E點(diǎn),證明:

(Ⅰ)∠ACE=∠BCD.

(Ⅱ)BC2=BE×CD.答案:(Ⅰ)因?yàn)锳C=BD,所以∠BCD=∠ABC.又因?yàn)镋C與圓相切于點(diǎn)C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因?yàn)椤螮CB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故BCBE=CDBC.即BC2=BE×CD.(10分)9.4個(gè)人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據(jù)分類計(jì)數(shù)問題,可以列舉出所有的結(jié)果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結(jié)果,故為:910.從2008名學(xué)生中選取50名學(xué)生參加數(shù)學(xué)競賽,若采用下面的方法選?。合扔煤唵坞S機(jī)抽樣從2008人中剔除8人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2008人中,每人入選的概率()

A.不全相等

B.均不相等

C.都相等,且為

D.都相等,且為答案:C11.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時(shí),a在e方向上的投影為

______.答案:a在e方向上的投影為a?e=|a||e|cosπ3=4故為:412.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()

A.

B.

C.

D.答案:C13.下列說法正確的是()

A.互斥事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件

B.互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件

C.事件A,B中至少有一個(gè)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率大

D.事件A,B同時(shí)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率小答案:B14.設(shè)向量a,b,c滿足a+b+c=0,a⊥b,且a,b的模分別為s,t,其中s=a1=1,t=a3,an+1=nan,則c的模為______.答案:∵向量a,b,c滿足a+b+c=0,a⊥b,∴向量a,b,c構(gòu)成一個(gè)直角三角形,如圖∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故為:5.15.圓柱的底面積為S,側(cè)面展開圖為正方形,那么這個(gè)圓柱的側(cè)面積為()A.πSB.2πSC.3πSD.4πS答案:設(shè)圓柱的底面半徑是R,母線長是l,∵圓柱的底面積為S,側(cè)面展開圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側(cè)面積為2πRl=4πS.故選D.16.將包含甲、乙兩人的4位同學(xué)平均分成2個(gè)小組參加某項(xiàng)公益活動(dòng),則甲、乙兩名同學(xué)分在同一小組的概率為()

A.

B.

C.

D.答案:C17.已知,,那么P(B|A)等于()

A.

B.

C.

D.答案:B18.已知函數(shù)①f(x)=3lnx;②f(x)=3ecosx;③f(x)=3ex;④f(x)=3cosx.其中對(duì)于f(x)定義域內(nèi)的任意一個(gè)自變量x1都存在唯一個(gè)個(gè)自變量x2,使f(x1)f(x2)=3成立的函數(shù)序號(hào)是______.答案:根據(jù)題意可知:①f(x)=3lnx,x=1時(shí),lnx沒有倒數(shù),不成立;②f(x)=3ecosx,任一自變量f(x)有倒數(shù),但所取x】的值不唯一,不成立;③f(x)=3ex,任意一個(gè)自變量,函數(shù)都有倒數(shù),成立;④f(x)=3cosx,當(dāng)x=2kπ+π2時(shí),函數(shù)沒有倒數(shù),不成立.所以成立的函數(shù)序號(hào)為③故為③19.以橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程是()

A.

B.

C.

D.答案:C20.某校欲在一塊長、短半軸長分別為10米與8米的橢圓形土地中規(guī)劃一個(gè)矩形區(qū)域搞綠化,則在此橢圓形土地中可綠化的最大面積為()平方米.

A.80

B.160

C.320

D.160答案:B21.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.22.一個(gè)多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A23.甲袋中裝有3個(gè)白球和5個(gè)黑球,乙袋中裝有4個(gè)白球和6個(gè)黑球,現(xiàn)從甲袋中隨機(jī)取出一個(gè)球放入乙袋中,充分混合后,再從乙袋中隨機(jī)取出一個(gè)球放回甲袋中,則甲袋中白球沒有減少的概率為()A.944B.2544C.3544D.3744答案:白球沒有減少的情況有:①抓出黑球,抓入任意球,概率是:58.抓出白球,抓入白球,概率是38×511=1588,故所求事件的概率為58+1588=3544,故選C.24.設(shè)平面α內(nèi)兩個(gè)向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()

A.(-1,-2,5)

B.(-1,1,-1)

C.(1,1,1)

D.(1,-1,-1)答案:B25.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設(shè)正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.26.已知點(diǎn)M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點(diǎn)M的坐標(biāo)是

______.答案:∵點(diǎn)M在z軸上,∴設(shè)點(diǎn)M的坐標(biāo)為(0,0,z)又|MA|=|MB|,由空間兩點(diǎn)間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點(diǎn)M的坐標(biāo)是(0,0,-3).故為:(0,0,-3).27.已知函數(shù)f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因?yàn)閒(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.28.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個(gè)命題中正確的是()

A.若α1<α2,則兩直線斜率k1<k2

B.若α1=α2,則兩直線斜率k1=k2

C.若兩直線斜率k1<k2,則α1<α2

D.若兩直線斜率k1=k2,則α1=α2答案:D29.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.30.由數(shù)字0、1、2、3、4可組成不同的三位數(shù)的個(gè)數(shù)是()

A.100

B.125

C.64

D.80答案:A31.把點(diǎn)按向量平移到點(diǎn),則的圖象按向量平移后的圖象的函數(shù)表達(dá)式為(

).A.B.C.D.答案:D解析:,由可得,所以平移后的函數(shù)解析式為32.如圖,已知點(diǎn)P在正方體ABCD-A′B′C′D′的對(duì)角線BD′上,∠PDA=60°.

(Ⅰ)求DP與CC′所成角的大?。?/p>

(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點(diǎn),DA為單位長建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因?yàn)閏os<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點(diǎn),DA為單位長建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因?yàn)閏os<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個(gè)法向量是DC=(0,1,0).因?yàn)閏os<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)33.拋擲兩個(gè)骰子,若至少有一個(gè)1點(diǎn)或一個(gè)6點(diǎn)出現(xiàn),就說這次試驗(yàn)失敗.那么,在3次試驗(yàn)中成功2次的概率為()

A.

B.

C.

D.答案:D34.如圖,已知OA、OB是⊙O的半徑,且OA⊥OB,P是線段OA上一點(diǎn),直線BP交⊙O于點(diǎn)Q,過Q作⊙O的切線交直線OA于點(diǎn)E,求證:∠OBP+∠AQE=45°.答案:證明:連接AB,則∠AQE=∠ABP,而OA=OB,所以∠ABO=45°所以∠OBP+∠AQE=∠OBP+∠ABP=∠ABO=45°35.下列命題中為真命題的是(

A.平行直線的傾斜角相等

B.平行直線的斜率相等

C.互相垂直的兩直線的傾斜角互補(bǔ)

D.互相垂直的兩直線的斜率互為相反數(shù)答案:A36.(選做題)參數(shù)方程中當(dāng)t為參數(shù)時(shí),化為普通方程為(

)。答案:x2-y2=137.等于()

A.

B.

C.

D.答案:B38.已知F1=i+2j+3k,F(xiàn)2=2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于一物體上,使物體從點(diǎn)M(1,-2,1)移動(dòng)到N(3,1,2),則合力所作的功是______.答案:由題意可得F1=(1,2,3)F2=(2,3,-1),F(xiàn)3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F?S=6×2+1×3+7×1=22故為:2239.(理)

設(shè)O為坐標(biāo)原點(diǎn),向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),則當(dāng)QA?QB取得最小值時(shí),點(diǎn)Q的坐標(biāo)為______.答案:∵OP=(1,1,2),點(diǎn)Q在直線OP上運(yùn)動(dòng),設(shè)OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)則QA?QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得當(dāng)λ=43時(shí),QA?QB取得最小值.此時(shí)Q的坐標(biāo)為(43,43,83)故為:(43,43,83)40.設(shè),則之間的大小關(guān)系是

.答案:b>a>c解析:略41.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組

x-

y=1x+y=3解之得x=2y=1故為x=2y=142.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點(diǎn)P,若PBPA=12,PCPD=13,則BCAD的值為______.答案:因?yàn)锳,B,C,D四點(diǎn)共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因?yàn)椤螾為公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.設(shè)OB=x,PC=y,則有x3y=y2x?x=6y2,所以BCAD=x3y=66.故填:66.43.一個(gè)公司共有240名員工,下設(shè)一些部門,要采用分層抽樣方法從全體員工中抽取一個(gè)容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是______.答案:每個(gè)個(gè)體被抽到的概率是

20240=112,那么從甲部門抽取的員工人數(shù)是60×112=5,故為:5.44.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()

A.-2

B.2

C.-8

D.8答案:C45.______稱為向量;常用

______表示,記為

______,又可用小寫字線表示為

______.答案:既有大小,又有方向的量叫做向量;表示方法:①常用有帶箭頭的線段來表示,記為有向線段AB,②又可用小寫字線表示為:a,b,c…,故為:既有大小,又有方向的量;有帶箭頭的線段,有向線段AB,a,b,c….46.袋中有4個(gè)形狀大小一樣的球,編號(hào)分別為1,2,3,4,從中任取2個(gè)球,則這2個(gè)球的編號(hào)之和為偶數(shù)的概率為()A.16B.23C.12D.13答案:根據(jù)題意,從4個(gè)球中取出2個(gè),其編號(hào)的情況有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6種;其中編號(hào)之和為偶數(shù)的有(1,3),(2,4),共2種;則2個(gè)球的編號(hào)之和為偶數(shù)的概率P=26=13;故選D.47.x+y+z=1,則2x2+3y2+z2的最小值為()

A.1

B.

C.

D.答案:C48.袋子A和袋子B均裝有紅球和白球,從A中摸出一個(gè)紅球的概率是13,從B中摸出一個(gè)紅球的概率是P.

(1)從A中有放回地摸球,每次摸出一個(gè),共摸5次,求恰好有3次摸到紅球的概率;

(2)若A、B兩個(gè)袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率為25,求P的值.答案:(1)每次從A中摸一個(gè)紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個(gè)球,A、B兩個(gè)袋子中的球數(shù)之比為1:2,則B中有2m個(gè)球,∵將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是25,∴13m+2mp3m=25,解得p=1330.49.某市某年一個(gè)月中30天對(duì)空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù)如下:

61

76

70

56

81

91

55

91

75

81

88

67

101

103

57

91

77

86

81

83

82

82

64

79

86

85

75

71

49

45

(Ⅰ)完成下面的頻率分布表;

(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;

(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的概率.

分組頻數(shù)頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.

…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質(zhì)量指數(shù)在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數(shù)頻率………[81,91)101030[91,101)3330………(Ⅲ)設(shè)A表示事件“在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”,由己知,質(zhì)量指數(shù)在區(qū)間[91,101)內(nèi)的有3天,記這三天分別為a,b,c,質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的有2天,記這兩天分別為d,e,則選取的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為10.…(10分)事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”的可能結(jié)果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為7,…(12分)所以P(A)=710.…(13分)50.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1則y=2×2+1=5,那么集合A中元素2在B中的象是5故選B.第3卷一.綜合題(共50題)1.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點(diǎn),且則C的坐標(biāo)為()

A.

B.

C.

D.答案:C2.已知點(diǎn)P的坐標(biāo)為(3,4,5),試在空間直角坐標(biāo)系中作出點(diǎn)P.答案:由P(3,4,5)可知點(diǎn)P在Ox軸上的射影為A(3,0,0),在Oy軸上射影為B(0,4,0),以O(shè)A,OB為鄰邊的矩形OACB的頂點(diǎn)C是點(diǎn)P在xOy坐標(biāo)平面上的射影C(3,4,0).過C作直線垂直于xOy坐標(biāo)平面,并在此直線的xOy平面上方截取5個(gè)單位,得到的就是點(diǎn)P.3.

如圖,已知PA為⊙O的切線,PBC為⊙O的割線,PA=6,PB=BC,⊙O的半徑OC=5,那么弦BC的弦心距OM=()

A.4

B.3

C.5

D.6

答案:A4.下列程序表示的算法是輾轉(zhuǎn)相除法,請(qǐng)?jiān)诳瞻滋幪钌舷鄳?yīng)語句:

(1)處填______;

(2)處填______.答案:∵程序表示的算法是輾轉(zhuǎn)相除法,根據(jù)輾轉(zhuǎn)相除法,先求出m除以n的余數(shù),然后利用輾轉(zhuǎn)相除法,將n的值賦給m,將余數(shù)賦給n,一直算到余數(shù)為零時(shí)m的值即可,∴(1)處應(yīng)該為r=mMODn;(2)處應(yīng)該為r=0.故為r=mMODn;r=0.5.證明空間任意無三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.答案:(必要性)依題意知,B、C、D三點(diǎn)不共線,則由共面向量定理的推論知:四點(diǎn)A、B、C、D共面?對(duì)空間任一點(diǎn)O,存在實(shí)數(shù)x1、y1,使得OA=OB+x1BC+y1BD=OB+x1(OC-OB)+y1(OD-OB)=(1-x1-y1)OB+x1OC+y1OD,取x=1-x1-y1、y=x1、z=y1,則有OA=xOB+yOC+zOD,且x+y+z=1.(充分性)對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.所以x=1-y-z得OA=(1-y-z)OB+yOC+zOD.OA=OB+yBC+zBD,即:BA=yBC+zBD,所以四點(diǎn)A、B、C、D共面.所以,空間任意無三點(diǎn)共線的四點(diǎn)A、B、C、D共面的充分必要條件是:對(duì)于空間任一點(diǎn)O,存在實(shí)數(shù)x、y、z且x+y+z=1,使得OA=xOB+yOC+zOD.6.某個(gè)命題與自然數(shù)n有關(guān),若n=k(k∈N*)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí)該命題也成立.現(xiàn)已知當(dāng)n=5時(shí),該命題不成立,那么可推得()

A.當(dāng)n=6時(shí),該命題不成立

B.當(dāng)n=6時(shí),該命題成立

C.當(dāng)n=4時(shí),該命題不成立

D.當(dāng)n=4時(shí),該命題成立答案:C7.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個(gè)相同的零點(diǎn),則f(0)與f(1)()

A.均為正值

B.均為負(fù)值

C.一正一負(fù)

D.至少有一個(gè)等于0答案:D8.如圖,長方體ABCD-A1B1C1D1中,M為DD1的中點(diǎn),N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.9.某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是()A.4B.5C.6D.7答案:根據(jù)流程圖所示的順序,程序的運(yùn)行過程中各變量值變化如下表:是否繼續(xù)循環(huán)

S

K循環(huán)前/0

0第一圈

1

1第二圈

3

2第三圈

11

3第四圈

20594第五圈

否∴最終輸出結(jié)果k=4故為A10.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運(yùn)用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補(bǔ)成一個(gè)長方體,其外接球的半徑R為長方體對(duì)角線長的一半.故為a2+b2+c22故為:a2+b2+c2211.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求

(1)a?(b+c);

(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a?(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).12.若2x1+3y1=4,2x2+3y2=4,則過點(diǎn)A(x1,y1),B(x2,y2)的直線方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴點(diǎn)A(x1,y1),B(x2,y2)在直線2x+3y=4上,又因?yàn)檫^兩點(diǎn)確定一條直線,故所求直線方程為2x+3y=4故為:2x+3y=413.若矩陣M=1101,則直線x+y+2=0在M對(duì)應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(diǎn)(x0,y0),(x,y)是所得的直線上一點(diǎn),[1

1][x]=[x0][0

1][y]=[y0]∴x+y=x0y=y0,∴代入直線x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.14.已知直線l的參數(shù)方程為x=3+12ty=7+32t(t為參數(shù)),曲線C的參數(shù)方程為x=4cosθy=4sinθ(θ為參數(shù)).

(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;

(II)若直線l與曲線C相交于A、B兩點(diǎn),試求線段AB的長.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.15.如圖是《集合》一章的知識(shí)結(jié)構(gòu)圖,如果要加入“交集”,則應(yīng)該放在()

A.“集合”的下位

B.“概念”的下位

C.“表示”的下位

D.“基本運(yùn)算”的下位

答案:D16.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)向量其中,若且0≤μ≤λ≤1,那么C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是()

A.

B.

C.

D.

答案:A17.下列各組向量中不平行的是()A.a(chǎn)=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:選項(xiàng)A中,b=-2a?a∥b;選項(xiàng)B中有:d=-3c?d∥c,選項(xiàng)C中零向量與任意向量平行,選項(xiàng)D,事實(shí)上不存在任何一個(gè)實(shí)數(shù)λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故應(yīng)選:D18.下列說法中正確的是()

A.以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐

B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺(tái)

C.圓柱、圓錐、圓臺(tái)的底面都是圓

D.圓錐側(cè)面展開圖為扇形,這個(gè)扇形所在圓的半徑等于圓錐的底面圓的半徑答案:C19.兩不重合直線l1和l2的方向向量分別為答案:∵直線l1和l2的方向向量分別為20.集合{1,2,3}的真子集總共有()A.8個(gè)B.7個(gè)C.6個(gè)D.5個(gè)答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個(gè).故選B.21.函數(shù)y=x2x4+9(x≠0)的最大值為______,此時(shí)x的值為______.答案:y=x2x4+9=1x2+9x2≤129=16,當(dāng)且僅當(dāng)x2=9x2,即x=±3時(shí)取等號(hào).故為:16,

±322.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()

A.9

B.18

C.27

D.36答案:B23.平面內(nèi)有兩個(gè)定點(diǎn)F1(-5,0)和F2(5,0),動(dòng)點(diǎn)P滿足條件|PF1|-|PF2|=6,則動(dòng)點(diǎn)P的軌跡方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線右支,得c=5,2a=6,∴a=3,∴b2=16,故動(dòng)點(diǎn)P的軌跡方程是x29-y216=1(x≥3).故選D.24.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC邊上任取一點(diǎn)M,則∠AMB≥90°的概率為______.答案:過A點(diǎn)做BC的垂線,垂足為M',當(dāng)M點(diǎn)落在線段BM'(含M'點(diǎn)不含B點(diǎn))上時(shí)∠AMB≥90由∠A=90°,AB=1,BC=2解得BM'=12,則∠AMB≥90°的概率p=122=14.故為:1425.直線y=3x的傾斜角為______.答案:∵直線y=3x的斜率是3,∴直線的傾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故為:60°26.在某項(xiàng)體育比賽中,七位裁判為一選手打出分?jǐn)?shù)的莖葉圖如圖,去掉一個(gè)最高分和一個(gè)攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評(píng)委為該選手打出的7個(gè)分?jǐn)?shù)數(shù)據(jù)為:89,90,90,93,93,94,95.去掉一個(gè)最低分89,去掉一個(gè)最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.27.曲線x=t+1ty=12(t+1t)(t為參數(shù))的直角坐標(biāo)方程是______.答案:∵曲線C的參數(shù)方程x=t+1ty=12(t+1t)(t為參數(shù))x=t+1t≥2,可得x的限制范圍是x≥2,再根據(jù)x2=t+1t+2,∴t+1t=x2-2,可得直角坐標(biāo)方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).28.某學(xué)校三個(gè)社團(tuán)的人員分布如下表(每名同學(xué)只參加一個(gè)社團(tuán)):

聲樂社排球社武術(shù)社高一4530a高二151020學(xué)校要對(duì)這三個(gè)社團(tuán)的活動(dòng)效果里等抽樣調(diào)查,按分層抽樣的方法從社團(tuán)成員中抽取30人,結(jié)果聲樂社被抽出12人,則a=______.答案:根據(jù)分層抽樣的定義和方法可得,1245+15=30120+a,解得a=30,故為3029.與雙曲線x2-y24=1有共同的漸近線,且過點(diǎn)(2,2)的雙曲線的標(biāo)準(zhǔn)方程為______.答案:設(shè)雙曲線方程為x2-y24=λ∵過點(diǎn)(2,2),∴λ=3∴所求雙曲線方程為x23-y212=1故為x23-y212=130.在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于()

A.3.2cm

B.3.4cm

C.3.6cm

D.4.0cm答案:C31.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。32.已知隨機(jī)變量x服從二項(xiàng)分布x~B(6,),則P(x=2)=()

A.

B.

C.

D.答案:D33.用數(shù)學(xué)歸納法證明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,當(dāng)n=1時(shí),n+3=4,而等式左邊起始為1的連續(xù)的正整數(shù)的和,故n=1時(shí),等式左邊的項(xiàng)為:1+2+3+4故為:1+2+3+434.設(shè)p,q是簡單命題,則“p且q為真”是“p或q為真”的()A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件答案:若“p且q為真”成立,則p,q全真,所以“p或q為真”成立若“p或q為真”則p,q全真或真q假或p假q真,所以“p且q為真”不一定成立∴“p且q為真”是“p或q為真”的充分不必要條件故選B35.栽培甲、乙兩種果樹,先要培育成苗,然后再進(jìn)行移栽.已知甲、乙兩種果樹成苗的概率分別為,,移栽后成活的概率分別為,.

(1)求甲、乙兩種果樹至少有一種果樹成苗的概率;

(2)求恰好有一種果樹能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹至少有一種成苗的概率為;(2).恰好有一種果樹培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹成苗為事件,;分別記甲、乙兩種果樹苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹至少有一種成苗的概率為;(2)解法一:分別記兩種果樹培育成苗且移栽成活為事件,則,.恰好有一種果樹培育成苗且移栽成活的概率為.解法二:恰好有一種果樹栽培成活的概率為.36.已知雙曲線的漸近線方程為2x±3y=0,F(xiàn)(0,-5)為雙曲線的一個(gè)焦點(diǎn),則雙曲線的方程為()

A.

B.

C.

D.答案:B37.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是(

A.

B.

C.

D.答案:B38.直線l1:x+3=0與直線l2:x+3y-1=0的夾角的大小為______.答案:由于直線l

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論