2023年武漢電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年武漢電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年武漢電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年武漢電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年武漢電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年武漢電力職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.已知圓O:x2+y2=5和點(diǎn)A(1,2),則過A且與圓O相切的直線與兩坐標(biāo)軸圍成的三角形的面積=______.答案:由題意知,點(diǎn)A在圓上,切線斜率為-1KOA=-121=-12,用點(diǎn)斜式可直接求出切線方程為:y-2=-12(x-1),即x+2y-5=0,從而求出在兩坐標(biāo)軸上的截距分別是5和52,所以,所求面積為12×52×5=254.2.設(shè)雙曲線的兩條漸近線為y=±x,則該雙曲線的離心率e為()

A.5

B.或

C.或

D.答案:C3.設(shè)、、為實(shí)數(shù),,則下列四個(gè)結(jié)論中正確的是(

)A.B.C.且D.且答案:D解析:若,則,則.若,則對(duì)于二次函數(shù),由可得結(jié)論.4.方程4x-3×2x+2=0的根的個(gè)數(shù)是(

A.0

B.1

C.2

D.3答案:C5.已知a,b,c是正實(shí)數(shù),且a+b+c=1,則的最小值為(

)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識(shí)。將1代入中,得,當(dāng)且僅當(dāng),又,故時(shí)不等式取,選C。6.雙曲線(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B7.某次考試,滿分100分,按規(guī)定x≥80者為良好,60≤x<80者為及格,小于60者不及格,畫出當(dāng)輸入一個(gè)同學(xué)的成績(jī)x時(shí),輸出這個(gè)同學(xué)屬于良好、及格還是不及格的程序框圖.答案:第一步:輸入一個(gè)成績(jī)X(0≤X≤100)第二步:判斷X是否大于等于80,若是,則輸出良好;否則,判斷X是否大于等于60,若是,則輸出及格;否則,輸出不及格;第三步:算法結(jié)束8.如圖,點(diǎn)O是正六邊形ABCDEF的中心,則以圖中點(diǎn)A、B、C、D、E、F、O中的任意一點(diǎn)為始點(diǎn),與始點(diǎn)不同的另一點(diǎn)為終點(diǎn)的所有向量中,除向量外,與向量共線的向量共有()

A.2個(gè)

B.3個(gè)

C.6個(gè)

D.9個(gè)

答案:D9.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.10.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函數(shù)y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正確;B、∵f(x)=1x,∴x≠0,故B錯(cuò)誤;C、f(x)=x3,其定義域?yàn)镽,故C錯(cuò)誤;D、f(x)=ex,其定義域?yàn)镽,故D錯(cuò)誤;故選A.11.給出下列結(jié)論:

(1)兩個(gè)變量之間的關(guān)系一定是確定的關(guān)系;

(2)相關(guān)關(guān)系就是函數(shù)關(guān)系;

(3)回歸分析是對(duì)具有函數(shù)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法;

(4)回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.

以上結(jié)論中,正確的有幾個(gè)?()

A.1

B.2

C.3

D.4答案:A12.已知函數(shù)f(x)=

-x+1,x<0x-1,x≥0,則不等式x+(x+1)f(x+1)≤1的解集是()

A.[-1,

2-1]B.(-∞,1]C.(-∞,

2-1]D.[-

2-1,

2-1]答案:C解析:由題意x+(x+1)f(x+1)=13.過點(diǎn)A(0,2),且與拋物線C:y2=6x只有一個(gè)公共點(diǎn)的直線l有()條.A.1B.2C.3D.4答案:∵點(diǎn)A(0,2)在拋物線y2=6x的外部,∴與拋物線C:y2=6x只有一個(gè)公共點(diǎn)的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對(duì)稱軸平行,故選C.14.某航空公司經(jīng)營(yíng)A,B,C,D這四個(gè)城市之間的客運(yùn)業(yè)務(wù),它們之間的直線距離的部分機(jī)票價(jià)格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機(jī)票價(jià)格與往返城市間的直線距離成正比,則BD間直線距離的票價(jià)為(設(shè)這四個(gè)城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A15.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個(gè)數(shù)的大小關(guān)系是:______(用符號(hào)“>”連接這三個(gè)字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.16.證明:等腰三角形底邊上任意一點(diǎn)到兩腰的距離之和等于一腰上的高.答案:證明見解析:建立如圖所示的直角坐標(biāo)系.設(shè),,其中,.則直線的方程為,直線的方程為.設(shè)底邊上任意一點(diǎn)為,則到的距離;到的距離;到的距離.因?yàn)椋?,結(jié)論成立.17.一個(gè)水平放置的平面圖形,其斜二測(cè)直觀圖是一個(gè)等腰梯形,其底角為45°,腰和上底均為1(如圖),則平面圖形的實(shí)際面積為______.答案:恢復(fù)后的原圖形為一直角梯形,上底為1,高為2,下底為1+2,S=12(1+2+1)×2=2+2.故為:2+218.①某尋呼臺(tái)一小時(shí)內(nèi)收到的尋呼次數(shù)X;

②長(zhǎng)江上某水文站觀察到一天中的水位X;

③某超市一天中的顧客量X.

其中的X是連續(xù)型隨機(jī)變量的是()

A.①

B.②

C.③

D.①②③答案:B19.若過點(diǎn)A(4,0)的直線l與曲線(x-2)2+y2=1有公共點(diǎn),則直線l的斜率的取值范圍為______.答案:設(shè)直線l的方程為y=k(x-4),即kx-y-4k=0∵直線l與曲線(x-2)2+y2=1有公共點(diǎn),∴圓心到直線l的距離小于等于半徑即|2k-4k|k2+1≤1,解得-33≤

k≤33∴直線l的斜率的取值范圍為[-33,33]故為[-33,33]20.已知平面向量=(3,1),=(x,3),且⊥,則實(shí)數(shù)x的值為()

A.9

B.1

C.-1

D.-9答案:C21.將一枚均勻硬幣

隨機(jī)擲20次,則恰好出現(xiàn)10次正面向上的概率為()

A.

B.

C.

D.答案:D22.某校有學(xué)生1

200人,為了調(diào)查某種情況打算抽取一個(gè)樣本容量為50的樣本,問此樣本若采用簡(jiǎn)單隨便機(jī)抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號(hào)0001,0002,0003…用抽簽法做1200個(gè)形狀、大小相同的號(hào)簽,然后將這些號(hào)簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號(hào)簽,連續(xù)抽取50次,就得到一個(gè)容量為50的樣本.23.利用計(jì)算機(jī)在區(qū)間(0,1)上產(chǎn)生兩個(gè)隨機(jī)數(shù)a和b,則方程有實(shí)根的概率為()

A.

B.

C.

D.1答案:A24.不等式x+x3≥0的解集是(

)。答案:{x|x≥0}25.已知a、b、c是實(shí)數(shù),且a2+b2+c2=1,求2a+b+2c的最大值.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值為3.26.設(shè)某種動(dòng)物由出生算起活到10歲的概率為0.9,活到15歲的概率為0.6.現(xiàn)有一個(gè)10歲的這種動(dòng)物,它能活到15歲的概率是______.答案:設(shè)活過10歲后能活到15歲的概率是P,由題意知0.9×P=0.6,解得P=23即一個(gè)10歲的這種動(dòng)物,它能活到15歲的概率是23故為:23.27.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.

(I)求直線的普通方程和圓的直角坐標(biāo)方程;

(II)求直線被圓截得的弦長(zhǎng).答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標(biāo)方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長(zhǎng)L=2r2-d2=4305(10分)28.下列數(shù)字特征一定是數(shù)據(jù)組中的數(shù)是()

A.眾數(shù)

B.中位數(shù)

C.標(biāo)準(zhǔn)差

D.平均數(shù)答案:A29.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時(shí),a在e方向上的投影為()A.43B.4C.42D.8+23答案:由兩個(gè)向量數(shù)量積的幾何意義可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故選B30.將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”和“3次正面朝上,1次反面朝上”的概率各是多少?答案:將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“2次正面朝上,2次反面朝上”的概率p1=C24(12)2(12)2=38.將一枚質(zhì)地均勻的硬幣連續(xù)投擲4次,出現(xiàn)“3次正面朝上,1次反面朝上”的概率p2=C34(12)3?12=14.31.設(shè)曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點(diǎn)的個(gè)數(shù)為()

A.1

B.2

C.3

D.4答案:B32.有一個(gè)正四棱臺(tái)形狀的油槽,可以裝油190L,假如它的兩底面邊長(zhǎng)分別等于60cm和40cm,求它的深度.答案:由于臺(tái)體的體積V=13(S+SS′+S′)h,則h=3VS+SS′+S′=3×1900003600+2400+1600=75cm.故它的深度為75cm.33.在空間直角坐標(biāo)系中,已知點(diǎn)P(a,0,0),Q(4,1,2),且|PQ|=,則a=()

A.1

B.-1

C.-1或9

D.1或9答案:C34.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1,即a=b=c=13時(shí),(3a+1+3b+1+3c+1)2的最大值為18因此,3a+1+3b+1+3c+1的最大值為18=3235.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為a0a1a2,ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕運(yùn)算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是()A.11010B.01100C.10111D.00011答案:A選項(xiàng)原信息為101,則h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為11010,A選項(xiàng)正確;B選項(xiàng)原信息為110,則h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以傳輸信息為01100,B選項(xiàng)正確;C選項(xiàng)原信息為011,則h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以傳輸信息為10110,C選項(xiàng)錯(cuò)誤;D選項(xiàng)原信息為001,則h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以傳輸信息為00011,D選項(xiàng)正確;故選C.36.用數(shù)學(xué)歸納法證明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,當(dāng)n=1時(shí),n+3=4,而等式左邊起始為1的連續(xù)的正整數(shù)的和,故n=1時(shí),等式左邊的項(xiàng)為:1+2+3+4故為:1+2+3+437.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,

則r的坐標(biāo)為______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-

3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)38.若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓x2+y2=16內(nèi)的概率是______.答案:由題意知,本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),共有6×6=36種結(jié)果,而滿足條件的事件是點(diǎn)P落在圓x2+y2=16內(nèi),列舉出落在圓內(nèi)的情況:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8種結(jié)果,根據(jù)古典概型概率公式得到P=836=29,故為:2939.已知命題p:所有有理數(shù)都是實(shí)數(shù),命題q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.40.點(diǎn)P從(2,0)出發(fā),沿圓x2+y2=4按逆時(shí)針方向運(yùn)動(dòng)弧長(zhǎng)到達(dá)點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為()

A.(-1,

)

B.(-,

-1)

C.(-1,

-)

D.(-,

1)答案:C41.已知向量a=(3,5,1),b=(2,2,3),c=(4,-1,-3),則向量2a-3b+4c的坐標(biāo)為______.答案:∵a=(3,5,1),b=(2,2,3),c=(4,-1,-3),∴向量2a-3b+4c=2(3,5,1)-3(2,2,3)+4(4,-1,-3)=(16,0,-19)故為:(16,0,-19).42.用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時(shí),從“n=k到n=k+1”時(shí),左邊應(yīng)增添的式子是______.答案:當(dāng)n=k時(shí),左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當(dāng)n=k+1時(shí),左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).43.橢圓的兩個(gè)焦點(diǎn)坐標(biāo)是()

A.(-3,5),(-3,-3)

B.(3,3),(3,-5)

C.(1,1),(-7,1)

D.(7,-1),(-1,-1)答案:B44.橢圓x225+y29=1的兩焦點(diǎn)為F1,F(xiàn)2,一直線過F1交橢圓于P、Q,則△PQF2的周長(zhǎng)為______.答案:∵a=5,由橢圓第一定義可知△PQF2的周長(zhǎng)=4a.∴△PQF2的周長(zhǎng)=20.,故為20.45.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.46.過點(diǎn)(-1,3)且垂直于直線x-2y+3=0的直線方程為(

A.2x+y-1=0

B.2x+y-5=0

C.x+2y-5=0

D.x-2y+7=0答案:A47.“若x、y全為零,則xy=0”的否命題為______.答案:由于“全為零”的否定為“不全為零”,所以“若x、y全為零,則xy=0”的否命題為“若x、y不全為零,則xy≠0”.故為:若x、y不全為零,則xy≠0.48.若數(shù)列{an}是等差數(shù)列,對(duì)于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比上述性質(zhì),若數(shù)列{cn}是各項(xiàng)都為正數(shù)的等比數(shù)列,對(duì)于dn>0,則dn=______時(shí),數(shù)列{dn}也是等比數(shù)列.答案:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時(shí),我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{cn}是等差數(shù)列,則對(duì)于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)列{cn}是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)dn=nC1C2C3Cn時(shí),數(shù)列{dn}也是等比數(shù)列.故為:nC1C2C3Cn49.已知函數(shù)f(x)=f(x+1)(x<4)2x(x≥4),則f(log23)=______.答案:因?yàn)?<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故為:24.50.(幾何證明選講選選做題)如圖,AC是⊙O的直徑,B是⊙O上一點(diǎn),∠ABC的平分線與⊙O相交于.D已知BC=1,AB=3,則AD=______;過B、D分別作⊙O的切線,則這兩條切線的夾角θ=______.答案:∵AC是⊙O的直徑,B是⊙O上一點(diǎn)∴∠ABC=90°∵∠ABC的平分線與⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圓周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°設(shè)所作的兩切線交于點(diǎn)P,連接OB,OD,則可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴點(diǎn)ODPB共圓∴∠P+∠BOD=180°∴∠P=30°故為:2,30°第2卷一.綜合題(共50題)1.設(shè)全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.2.某市為研究市區(qū)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖(如圖).

(Ⅰ)求月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù);

(Ⅱ)估計(jì)被調(diào)查者月收入的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)內(nèi)的被調(diào)查人數(shù)1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估計(jì)被調(diào)查者月收入的平均數(shù)為24003.直線(a+1)x-(2a+5)y-6=0必過一定點(diǎn),定點(diǎn)的坐標(biāo)為(

)。答案:(-4,-2)4.如圖程序輸出的結(jié)果是()

A.3,4

B.4,4

C.3,3

D.4,3

答案:B5.曲線的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)方程為______.答案:將原極坐標(biāo)方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標(biāo)方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.6.直線y=kx+1與橢圓x29+y24=1的位置關(guān)系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(diǎn)(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內(nèi)部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.7.已知圓C的極坐標(biāo)方程是ρ=2sinθ,那么該圓的直角坐標(biāo)方程為

______,半徑長(zhǎng)是

______.答案:把極坐標(biāo)方程是ρ=2sinθ的兩邊同時(shí)乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.8.已知命題p:“有的實(shí)數(shù)沒有平方根.”,則非p是______.答案:∵命題p:“有的實(shí)數(shù)沒有平方根.”,是一個(gè)特稱命題,非P是它的否定,應(yīng)為全稱命題“所有實(shí)數(shù)都有平方根”故為:所有實(shí)數(shù)都有平方根.9.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒有整數(shù)根”正確的假設(shè)是方程存在實(shí)數(shù)根x0為()

A.整數(shù)

B.奇數(shù)或偶數(shù)

C.正整數(shù)或負(fù)整數(shù)

D.自然數(shù)或負(fù)整數(shù)答案:A10.已知圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,在下列說法中:

①對(duì)于任意的θ,圓C1與圓C2始終相切;

②對(duì)于任意的θ,圓C1與圓C2始終有四條公切線;

③當(dāng)θ=π6時(shí),圓C1被直線l:3x-y-1=0截得的弦長(zhǎng)為3;

④P,Q分別為圓C1與圓C2上的動(dòng)點(diǎn),則|PQ|的最大值為4.

其中正確命題的序號(hào)為

______.答案:①由圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,得到圓C1的圓心(2cosθ,2sinθ),半徑R=1;圓C2的圓心(0,0),半徑r=1,則兩圓心之間的距離d=(2cosθ)2+(2sinθ)2=2,而R+r=1+1=2,所以兩圓的位置關(guān)系是外切,此正確;②由①得兩圓外切,所以公切線的條數(shù)是3條,所以此錯(cuò)誤;③把θ=π6代入圓C1:(x-2cosθ)2+(y-2sinθ)2=1得:(x-3)2+(y-1)2=1,圓心(3,1)到直線l的距離d=|3-2|3+1=12,則圓被直線l截得的弦長(zhǎng)=21-(12)2=3,所以此正確;④由兩圓外切得到|PQ|=2+2=4,此正確.綜上,正確的序號(hào)為:①③④.故為:①③④11.雙曲線(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線上,且滿足|PF1|+|PF2|=2,則△P

F1F2的面積為()

A.

B.1

C.2

D.4答案:B12.若雙曲線的焦點(diǎn)到其漸近線的距離等于實(shí)軸長(zhǎng),則該雙曲線的離心率為()

A.5

B.

C.2

D.答案:B13.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(

)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。14.兩平行直線x+3y-4=0與2x+6y-9=0的距離是

______.答案:由直線x+3y-4=0取一點(diǎn)A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102015.如圖1,一個(gè)“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個(gè)幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長(zhǎng)為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長(zhǎng)為2,則半圓錐的高為3故V=13×12×π×3=36π故選B16.已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,則A1B1=A2B2是l1∥l2的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分又非必要條件答案:當(dāng)A1B1=A2B2

時(shí),兩直線可能平行,也可能重合,故充分性不成立.當(dāng)l1∥l2時(shí),B1與B2可能都等于0,故A1B1=A2B2

不一定成立,故必要性不成立.綜上,A1B1=A2B2是l1∥l2的既非充分又非必要條件,故選D.17.有一批數(shù)量很大的產(chǎn)品,其中次品率是20%,對(duì)這批產(chǎn)品進(jìn)行抽查,每次抽出一件,如果抽出次品則抽查終止,否則繼續(xù)抽查,直到抽出次品,但抽查次數(shù)最多不超過9次,那么抽查次數(shù)為9次的概率為(

A.0.89

B.0.88×0.2

C.0.88

D.0.28×0.8答案:C18.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,

則r的坐標(biāo)為______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-

3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)19.甲、乙兩人投籃,投中的概率分別為0.6,0.7,若兩人各投2次,則兩人都投中1次的概率為______.答案:兩人都投中1次的概率為C210.6×0.4×C210.7×0.3=0.2016故為:0.201620.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,則

k=______.答案:因?yàn)橐阎獂2+4y2+kz2=36根據(jù)柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故為:9.21.函數(shù)f(x)的定義域?yàn)镽+,若f(x+y)=f(x)+f(y),f(8)=3,則f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,則f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故選B.22.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,M為DD1的中點(diǎn),N在AC上,且AN:NC=2:1.求證:與共面.答案:證明:與共面.23.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點(diǎn)為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點(diǎn).其他非0的零點(diǎn)關(guān)于原點(diǎn)對(duì)稱.∴x1+x2+…+x2011=0.故為:0.24.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:2125.對(duì)于任意空間四邊形,試證明它的一組對(duì)邊中點(diǎn)的連線與另一組對(duì)邊可平行于同一平面.答案:證明:如圖所示,空間四邊形ABCD,E、F分別為AB、CD的中點(diǎn),利用多邊形加法法則可得①又E、F分別是AB、CD的中點(diǎn),故有②將②代入①后,兩式相加得即與共面,∴EF與AD、BC可平行于同一平面.26.若f(x)=exx≤0lnxx>0,則f(f(12))=______.答案:∵f(x)=ex,x≤0lnx,x>0,∴f(f(12))=f(ln12)=eln12=12.故為:12.27.已知f(x)在(0,2)上是增函數(shù),f(x+2)是偶函數(shù),那么正確的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根據(jù)函數(shù)的圖象的平移可得把f(x+2)向右平移2個(gè)單位可得f(x)的圖象f(x+2)是偶函數(shù),其圖象關(guān)于y軸對(duì)稱可知f(x)的圖象關(guān)于x=2對(duì)稱∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)單調(diào)遞增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故選:B28.曲線與坐標(biāo)軸的交點(diǎn)是(

)A.B.C.D.答案:B解析:當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為;當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為29.若a=(1,1),則|a|=______.答案:由題意知,a=(1,1),則|a|=1+1=2,故為:2.30.考慮坐標(biāo)平面上以O(shè)(0,0),A(3,0),B(0,4)為頂點(diǎn)的三角形,令C1,C2分別為△OAB的外接圓、內(nèi)切圓.請(qǐng)問下列哪些選項(xiàng)是正確的?

(1)C1的半徑為2

(2)C1的圓心在直線y=x上

(3)C1的圓心在直線4x+3y=12上

(4)C2的圓心在直線y=x上

(5)C2的圓心在直線4x+3y=6上.答案:O,A,B三點(diǎn)的位置如右圖所示,C1,C2為△OAB的外接圓與內(nèi)切圓,∵△OAB為直角三角形,∴C1為以線段AB為直徑的圓,故半徑為12|AB|=52,所以(1)選項(xiàng)錯(cuò)誤;又C1的圓心為線段AB的中點(diǎn)(32,2),此點(diǎn)在直線4x+3y=12上,所以選項(xiàng)(2)錯(cuò)誤,選項(xiàng)(3)正確;如圖,P為△OAB的內(nèi)切圓C2的圓心,故P到△OAB的三邊距離相等均為圓C2的半徑r.連接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐標(biāo)為(1,1),此點(diǎn)在y=x上.所以選項(xiàng)(4)正確,選項(xiàng)(5)錯(cuò)誤,綜上,正確的選項(xiàng)有(3)、(4).31.若3π2<α<2π,則直線xcosα+ysinα=1必不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點(diǎn),因而直線不過第二象限.故選B32.設(shè)向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,則θ=______.答案:若a∥b,則sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故為:π4.33.已知函數(shù)f(x)=x21+x2.

(1)求f(2)與f(12),f(3)與f(13);

(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f(1x)有什么關(guān)系?并證明你的結(jié)論;

(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分證:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分34.已知函數(shù)f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因?yàn)閒(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.35.已知a、b是不共線的向量,AB=λa+b,AC=a+μb(λ,μ∈R),則A、B、C三點(diǎn)共線的充要條件是______.答案:由于AB,AC有公共點(diǎn)A,∴若A、B、C三點(diǎn)共線則AB與AC共線即存在一個(gè)實(shí)數(shù)t,使AB=tAC即λ=at1=μt消去參數(shù)t得:λμ=1反之,當(dāng)λμ=1時(shí)AB=1μa+b此時(shí)存在實(shí)數(shù)1μ使AB=1μAC故AB與AC共線又由AB,AC有公共點(diǎn)A,∴A、B、C三點(diǎn)共線故A、B、C三點(diǎn)共線的充要條件是λμ=136.已知點(diǎn)P是以F1、F2為左、右焦點(diǎn)的雙曲線(a>0,b>0)左支上一點(diǎn),且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()

A.

B.

C.

D.答案:D37.已知2a=3b=6c則有()

A.∈(2,3)

B.∈(3,4)

C.∈(4,5)

D.∈(5,6)答案:C38.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.y=0.7x+0.35,那么表中m的值為______.

x3456y2.5m44.5答案:∵根據(jù)所給的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵這組數(shù)據(jù)的樣本中心點(diǎn)在線性回歸直線上,∴11+m4=0.7×4.5+0.35,∴m=3,故為:339.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因?yàn)榘霃綖?,圓心在y軸上,且與直線y=6相切,所以可知有兩個(gè)圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.40.橢圓x2+my2=1的焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則m的值為______.答案:方程x2+my2=1變?yōu)閤2+y21m=1∵焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,∴1m=2,解得m=14故應(yīng)填1441.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,下列說法正確的是()

A.若k2的觀測(cè)值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病

B.從獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時(shí),我們說某人吸煙,那么他有99%的可能患有肺病

C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤

D.以上三種說法都不正確答案:D42.已知△ABC中,過重心G的直線交邊AB于P,交邊AC于Q,設(shè)AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過重心G且平行于邊BC∵點(diǎn)G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項(xiàng)為A43.對(duì)于5年可成材的樹木,從栽種到5年成材的木材年生長(zhǎng)率為18%,以后木材的年生長(zhǎng)率為10%.樹木成材后,既可以出售樹木,重栽新樹苗;也可以讓其繼續(xù)生長(zhǎng).問:哪一種方案可獲得較大的木材量?(注:只需考慮10年的情形)(參考數(shù)據(jù):lg2=0.3010,lg1.1=0.0414)答案:由題意,第一種得到的木材為(1+18%)5×2第二種得到的木材為(1+18%)5×(1+10%)5第一種除以第二種的結(jié)果為2(1+10%)5=21.61>1所以第一種方案可獲得較大的木材量.44.如圖,O為直線A0A2013外一點(diǎn),若A0,A1,A2,A3,A4,A5,…,A2013中任意相鄰兩點(diǎn)的距離相等,設(shè)OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其結(jié)果為______.答案:設(shè)A0A2013的中點(diǎn)為A,則A也是A1A2012,…A1006A1007的中點(diǎn),由向量的中點(diǎn)公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故為:1007(a+b)45.設(shè)a=lg2+lg5,b=ex(x<0),則a與b的大小關(guān)系是?答案:a═lg2+lg5=lg10=1又b=ex,由指數(shù)函數(shù)的性質(zhì)知,當(dāng)x<0時(shí),0<b<1∴a>b46.不等式0.52x>0.5x-1的解集為______.答案:由于函數(shù)y=0.5x

是R上的減函數(shù),故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集為(-∞,-1),故為(-∞,-1).47.命題:“方程x2-1=0的解是x=±1”,其使用邏輯聯(lián)結(jié)詞的情況是()A.使用了邏輯聯(lián)結(jié)詞“且”B.使用了邏輯聯(lián)結(jié)詞“或”C.使用了邏輯聯(lián)結(jié)詞“非”D.沒有使用邏輯聯(lián)結(jié)詞答案:“x=±1”可以寫成“x=1或x=-1”,故選B.48.已知隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),P(ξ≤4)=0.84,則P(ξ≤0)等于()A.0.16B.0.32C.0.68D.0.84答案:∵隨機(jī)變量ξ服從正態(tài)分布N(2,0.2),μ=2,∴p(ξ≤0)=p(ξ≥4)=1-p(ξ≤4)=0.16.故選A.49.在某電視歌曲大獎(jiǎng)賽中,最有六位選手爭(zhēng)奪一個(gè)特別獎(jiǎng),觀眾A,B,C,D猜測(cè)如下:A說:獲獎(jiǎng)的不是1號(hào)就是2號(hào);A說:獲獎(jiǎng)的不可能是3號(hào);C說:4號(hào)、5號(hào)、6號(hào)都不可能獲獎(jiǎng);D說:獲獎(jiǎng)的是4號(hào)、5號(hào)、6號(hào)中的一個(gè).比賽結(jié)果表明,四個(gè)人中恰好有一個(gè)人猜對(duì),則猜對(duì)者一定是觀眾

獲特別獎(jiǎng)的是

號(hào)選手.答案:C,3.解析:推理如下:因?yàn)橹挥幸蝗瞬聦?duì),而C與D互相否定,故C、D中一人猜對(duì)。假設(shè)D對(duì),則推出B也對(duì),與題設(shè)矛盾,故D猜錯(cuò),所以猜對(duì)者一定是C;于是B一定猜錯(cuò),故獲獎(jiǎng)?wù)呤?號(hào)選手(此時(shí)A錯(cuò)).50.已知空間三點(diǎn)A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是

______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°第3卷一.綜合題(共50題)1.一個(gè)樣本a,99,b,101,c中五個(gè)數(shù)恰成等差數(shù)列,則這個(gè)樣本的極差與標(biāo)準(zhǔn)差分別為(

)。答案:4;2.設(shè)A、B為兩個(gè)事件,若事件A和B同時(shí)發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為______.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:353.已知a=4,b=1,焦點(diǎn)在x軸上的橢圓方程是(

A.

B.

C.

D.答案:C4.如圖程序輸出的結(jié)果是()

A.3,4

B.4,4

C.3,3

D.4,3

答案:B5.已知O是正方形ABCD對(duì)角線的交點(diǎn),在以O(shè),A,B,C,D這5點(diǎn)中任意一點(diǎn)為起點(diǎn),另一點(diǎn)為終點(diǎn)的所有向量中,

(1)與BC相等的向量有

______;

(2)與OB長(zhǎng)度相等的向量有

______;

(3)與DA共線的向量有

______.答案:如圖:(1)與BC相等的向量有AD.(2)與OB長(zhǎng)度相等的向量有OA、OC、OD、AO、CO、DO.(3)與DA共線的向量有

CB、BC.6.過點(diǎn)A(-1,4)作圓C:(x-2)2+(y-3)2=1的切線l,求切線l的方程.答案:設(shè)方程為y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切線l的方程為y=4或3x+4y-13=07.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k

2=16+6k104+k

2.解得k=2,故為2.8.若定義在正整數(shù)有序?qū)仙系亩瘮?shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D9.已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當(dāng)x1>x2>π時(shí),使f(x1)+f(x2)2<f(x1+x22)恒成立的函數(shù)是()A.f1(x)=x2B.f2(x)=2xC.f3(x)=log2xD.f4(x)=sinx答案:由題意,當(dāng)x1>x2>π時(shí),使f(x1)+f(x2)2<f(x1+x22)恒成立,圖象呈上凸趨勢(shì)由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢(shì),故f(x1)+f(x2)2<f(x1+x22)不成立故選C.10.已知直線l經(jīng)過點(diǎn)A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截得的線段的中點(diǎn)M在直線x+y-3=0上.求直線l的方程.答案:∵點(diǎn)M在直線x+y-3=0上,∴設(shè)點(diǎn)M坐標(biāo)為(t,3-t),則點(diǎn)M到l1、l2的距離相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l過點(diǎn)A(2,4),即5x-y-6=0,故直線l的方程為5x-y-6=0.11.不等式的解集

.答案:;解析:略12.若點(diǎn)P(a,b)在圓C:x2+y2=1的外部,則直線ax+by+1=0與圓C的位置關(guān)系是()

A.相切

B.相離

C.相交

D.相交或相切答案:C13.如圖,F(xiàn)是定直線l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過A、B分別作l的垂線與圓C過F的切線相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線的同一條拋物線上.

(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線的方程;

(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過拋物線焦點(diǎn)F的直線與拋物線相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線的準(zhǔn)線l相切”請(qǐng)問:此命題是正確?試證明你的判斷;

(Ⅲ)請(qǐng)選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點(diǎn)為原點(diǎn),KF所在直線為x軸建立平面直角坐標(biāo)系如圖1,并設(shè)|KF|=p,則可得該拋物線的方程為

y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點(diǎn)為M,P、Q、M在拋物線準(zhǔn)線l上的射影分別為A、B、D,∵PQ是拋物線過焦點(diǎn)F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M(jìn)是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點(diǎn)F的直線與橢圓交于P、Q兩點(diǎn),則以PQ為直徑的圓與橢圓相應(yīng)的準(zhǔn)線l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準(zhǔn)線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則以PQ為直徑的圓與雙曲線相應(yīng)的準(zhǔn)線l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準(zhǔn)線l相交.14.如果:在10進(jìn)制中2004=4×100+0×101+0×102+2×103,那么類比:在5進(jìn)制中數(shù)碼2004折合成十進(jìn)制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.15.設(shè)四邊形ABCD中,有DC=12AB,且|AD|=|BC|,則這個(gè)四邊形是

______.答案:由DC=12AB知四邊形ABCD是梯形,又|AD|=|BC|,即梯形的對(duì)角線相等,所以,四邊形ABCD是等腰梯形.故為:等腰梯形.16.已知復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,則復(fù)數(shù)z的虛部為______.答案:設(shè)復(fù)數(shù)的虛部是b,∵復(fù)數(shù)z的模為1,且復(fù)數(shù)z的實(shí)部為13,∴(13)2+b2=1,∴b2=89,∴b=±223故為:±22317.直線上與點(diǎn)的距離等于的點(diǎn)的坐標(biāo)是_______。答案:,或18.已知A(1,2),B(-3,b)兩點(diǎn)的距離等于42,則b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故為:6或-219.設(shè)拋物線y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),PA⊥l,A為垂足.如果直線AF的斜率為-3,那么|PF|=()A.43B.8C.83D.16答案:拋物線的焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2,直線AF的方程為y=-3(x-2),所以點(diǎn)A(-2,43)、P(6,43),從而|PF|=6+2=8故選B.20.方程組的解集為()

A.{2,1}

B.{1,2}

C.{(2,1)}

D.(2,1)答案:C21.點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的正投影,則|OB|等于()

A.

B.

C.

D.答案:B22.是平面直角坐標(biāo)系(坐標(biāo)原點(diǎn)為O)內(nèi)分別與x軸、y軸正方向相同的兩個(gè)單位向量,且則△OAB的面積等于()

A.15

B.10

C.7.5

D.5答案:D23.設(shè)a=log132,b=log1213,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.24.已知f(x)=,a≠b,

求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一

∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當(dāng)1+ab<0時(shí),∵>0,∴不等式1+ab<成立.從而原不等式成立.當(dāng)1+ab≥0時(shí),要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二

∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.25.函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy.

(1)求f(0)的值;

(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達(dá)式并用數(shù)學(xué)歸納法證明你的結(jié)論;

(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數(shù)學(xué)歸納法證明之.①當(dāng)n=1時(shí)猜想成立.②假設(shè)n=k時(shí)猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時(shí)猜想也成立.對(duì)于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設(shè)n=k(k∈N*)時(shí)命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).26.過直線y=x上的一點(diǎn)作圓(x-5)2+(y-1)2=2的兩條切線l1,l2,當(dāng)直線l1,l2關(guān)于y=x對(duì)稱時(shí),它們之間的夾角為()

A.30°

B.45°

C.60°

D.90°答案:C27.雙曲線的實(shí)軸長(zhǎng)和焦距分別為()

A.

B.

C.

D.答案:C28.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為729.(選做題)(幾何證明選講選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點(diǎn)D,AD=2,則∠C的大小為______.答案:∵∠B=90°,AB=4,BC為圓的直徑∴AB與圓相切,由切割線定理得,AB2=AD?AC∴AC=8故∠C=30°故為:30°30.若關(guān)于x,y的二元一次方程組m11mxy=m+12m至多有一組解,則實(shí)數(shù)m的取值范圍是______.答案:關(guān)于x,y的二元一次方程組m11mxy=m+12m即二元一次方程組mx+y=m+1①x+my=2m②①×m-②得(m2-1)x=m(m-1)當(dāng)m-1≠0時(shí)(m2-1)x=m(m-1)至多有一組解∴m≠1故為:(-∞,1)∪(1,+∞)31.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設(shè)c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).32.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個(gè)三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個(gè)三角形外接圓的方程為(x+2)2+(y-2)2=10.33.設(shè)點(diǎn)O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因?yàn)辄c(diǎn)O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以O(shè)A=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.34.已知兩個(gè)非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(duì)(A,B)個(gè)數(shù)為7若A={1,2,}或{1,3}或{2,3}時(shí),集合B中至少有一個(gè)元素,故每種情況下,B都有4種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為4×3=12若A={1}或{3}或{2}時(shí)集合中至少有二個(gè)元素,故每種情況下,B都有2種情況,故有序集合對(duì)(A,B)個(gè)數(shù)為2×3=6綜上,符合條件的有序集合對(duì)(A,B)個(gè)數(shù)是7+12+6=25故選C35.棱長(zhǎng)為a的正四面體中,AB?BC+AC?BD=______.答案:棱長(zhǎng)為a的正四面體中,AB=BC=a,且AB與BC的夾角為120°,AC⊥BD.∴AB?BC+AC?BD=a?acos120°+0=-a22,故為:-12.36.在調(diào)試某設(shè)備的線路設(shè)計(jì)中,要選一個(gè)電阻,調(diào)試者手中只有阻值分別為0.7KΩ,1.1KΩ,1.9KΩ,2.0KΩ,3.5KΩ,4.5KΩ,5.5KΩ七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)法進(jìn)行優(yōu)選試驗(yàn)時(shí),依次將電阻值從小到大安排序號(hào),則第1個(gè)試點(diǎn)的電阻的阻值是(

).答案:3.5kΩ37.若回歸直線方程中的回歸系數(shù)b=0時(shí),則相關(guān)系數(shù)r=______.答案:由于在回歸系數(shù)b的計(jì)算公式中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論