版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.在體育課上,甲,乙兩名同學(xué)分別進(jìn)行了5次跳遠(yuǎn)測(cè)試,經(jīng)計(jì)算他們的平均成績(jī)相同.若要比較這兩名同學(xué)的成績(jī)哪一個(gè)更為穩(wěn)定,通常需要比較他們成績(jī)的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差2.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.723.如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點(diǎn)E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.54.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,點(diǎn)B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.5.如圖,△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為()A.2.3 B.2.4 C.2.5 D.2.66.已知等腰三角形的周長(zhǎng)是10,底邊長(zhǎng)y是腰長(zhǎng)x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關(guān)系的圖象是()A. B. C.D7.據(jù)報(bào)道,目前我國(guó)“天河二號(hào)”超級(jí)計(jì)算機(jī)的運(yùn)算速度位居全球第一,其運(yùn)算速度達(dá)到了每秒338600000億次,數(shù)字338600000用科學(xué)記數(shù)法可簡(jiǎn)潔表示為()A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×1098.一個(gè)圓的內(nèi)接正六邊形的邊長(zhǎng)為2,則該圓的內(nèi)接正方形的邊長(zhǎng)為()A. B.2 C.2 D.49.如圖,已知矩形ABCD中,BC=2AB,點(diǎn)E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.10.如圖所示,是用直尺和圓規(guī)作一個(gè)角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據(jù)是()A.SAS B.SSS C.AAS D.ASA二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.正多邊形的一個(gè)外角是,則這個(gè)多邊形的內(nèi)角和的度數(shù)是___________________.12.請(qǐng)從以下兩個(gè)小題中任選一個(gè)作答,若多選,則按第一題計(jì)分.A.正多邊形的一個(gè)外角是40°,則這個(gè)正多邊形的邊數(shù)是____________.B.運(yùn)用科學(xué)計(jì)算器比較大小:________sin37.5°.13.△ABC的頂點(diǎn)都在方格紙的格點(diǎn)上,則sinA=_▲.14.如圖,在△ABC中,點(diǎn)E,F(xiàn)分別是AC,BC的中點(diǎn),若S四邊形ABFE=9,則S三角形EFC=________.15.如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)得到矩形GBEF,點(diǎn)A落在矩形ABCD的邊CD上,連接CE,則CE的長(zhǎng)是________.16.將2.05×10﹣3用小數(shù)表示為__.三、解答題(共8題,共72分)17.(8分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線y=x2+bx+c與x軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為P.(1)求該拋物線的解析式;(2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)M,使以C,P,M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出所符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;(3)當(dāng)0<x<3時(shí),在拋物線上求一點(diǎn)E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).18.(8分)九(1)班針對(duì)“你最喜愛的課外活動(dòng)項(xiàng)目”對(duì)全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動(dòng)項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.根據(jù)以上信息解決下列問題:,;扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對(duì)應(yīng)扇形的圓心角度數(shù)為°;從選航模項(xiàng)目的4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請(qǐng)用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.19.(8分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點(diǎn),連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點(diǎn)P作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,過點(diǎn)A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.20.(8分)圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AC的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.(1)如圖1,點(diǎn)P在小正方形的頂點(diǎn)上,在圖1中作出點(diǎn)P關(guān)于直線AC的對(duì)稱點(diǎn)Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長(zhǎng);(2)在圖2中畫出一個(gè)以線段AC為對(duì)角線、面積為6的矩形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上.21.(8分)在傳箴言活動(dòng)中,某班團(tuán)支部對(duì)該班全體團(tuán)員在一個(gè)月內(nèi)所發(fā)箴言條數(shù)的情況進(jìn)行統(tǒng)計(jì),并繪制成了如圖所示的兩幅統(tǒng)計(jì)圖(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(2)該班團(tuán)員在這一個(gè)月內(nèi)所發(fā)箴言的平均條數(shù)是________;(3)如果發(fā)了3條箴言的同學(xué)中有兩位男同學(xué),發(fā)了4條箴言的同學(xué)中有三位女同學(xué),現(xiàn)要從發(fā)了3條箴言和4條箴言的同學(xué)中分別選出一位參加總結(jié)會(huì),請(qǐng)你用列表或樹狀圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.22.(10分)如圖,點(diǎn)C是線段BD的中點(diǎn),AB∥EC,∠A=∠E.求證:AB=23.(12分)列方程解應(yīng)用題:為宣傳社會(huì)主義核心價(jià)值觀,某社區(qū)居委會(huì)計(jì)劃制作1200個(gè)大小相同的宣傳欄.現(xiàn)有甲、乙兩個(gè)廣告公司都具備制作能力,居委會(huì)派出相關(guān)人員分別到這兩個(gè)廣告公司了解情況,獲得如下信息:信息一:甲公司單獨(dú)制作完成這批宣傳欄比乙公司單獨(dú)制作完成這批宣傳欄多用10天;信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.根據(jù)以上信息,求甲、乙兩個(gè)廣告公司每天分別能制作多少個(gè)宣傳欄?24.已知關(guān)于x的一元二次方程x2﹣6x+(2m+1)=0有實(shí)數(shù)根.求m的取值范圍;如果方程的兩個(gè)實(shí)數(shù)根為x1,x2,且2x1x2+x1+x2≥20,求m的取值范圍.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越??;反之,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好?!驹斀狻坑捎诜讲钅芊从硵?shù)據(jù)的穩(wěn)定性,需要比較這兩名學(xué)生立定跳遠(yuǎn)成績(jī)的方差.故選D.2、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.3、C【解析】
如圖(見解析),連接BD、CD,根據(jù)圓周角定理可得,再根據(jù)相似三角形的判定定理可得,然后由相似三角形的性質(zhì)可得,同理可得;又根據(jù)圓周角定理可得,再根據(jù)正切的定義可得,然后求兩個(gè)正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點(diǎn)睛】本題考查了圓周角定理、相似三角形的判定定理與性質(zhì)、正切函數(shù)值等知識(shí)點(diǎn),通過作輔助線,結(jié)合圓周角定理得出相似三角形是解題關(guān)鍵.4、A【解析】
先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計(jì)算出S扇形ABD,由旋轉(zhuǎn)的性質(zhì)得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點(diǎn)睛】本題考查扇形面積計(jì)算,熟記扇形面積公式,采用作差法計(jì)算面積是解題的關(guān)鍵.5、B【解析】試題分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如圖:設(shè)切點(diǎn)為D,連接CD,∵AB是⊙C的切線,∴CD⊥AB,∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,∴⊙C的半徑為,故選B.考點(diǎn):圓的切線的性質(zhì);勾股定理.6、D【解析】
先根據(jù)三角形的周長(zhǎng)公式求出函數(shù)關(guān)系式,再根據(jù)三角形的任意兩邊之和大于第三邊,三角形的任意兩邊之差小于第三邊求出x的取值范圍,然后選擇即可.【詳解】由題意得,2x+y=10,所以,y=-2x+10,由三角形的三邊關(guān)系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式組的解集是2.5<x<5,正確反映y與x之間函數(shù)關(guān)系的圖象是D選項(xiàng)圖象.故選:D.7、A【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:數(shù)字338600000用科學(xué)記數(shù)法可簡(jiǎn)潔表示為3.386×108故選:A【點(diǎn)睛】本題考查科學(xué)記數(shù)法—表示較大的數(shù).8、B【解析】
圓內(nèi)接正六邊形的邊長(zhǎng)是1,即圓的半徑是1,則圓的內(nèi)接正方形的對(duì)角線長(zhǎng)是2,進(jìn)而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長(zhǎng)是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對(duì)角線長(zhǎng)為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長(zhǎng)是1.故選B.【點(diǎn)睛】本題考查正多邊形與圓,關(guān)鍵是利用知識(shí)點(diǎn):圓內(nèi)接正六邊形的邊長(zhǎng)和圓的半徑相等;圓的內(nèi)接正方形的對(duì)角線長(zhǎng)為圓的直徑解答.9、C【解析】
過點(diǎn)A作AF⊥DE于F,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質(zhì)以及矩形的性質(zhì)解答即可.【詳解】解:如圖,過點(diǎn)A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì),角平分線上的點(diǎn)到角的兩邊距離相等的性質(zhì),以及全等三角形的判定與性質(zhì),關(guān)鍵是根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得AF=AB.10、B【解析】
由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據(jù)SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選:B.【點(diǎn)睛】本題主要考查了全等三角形的判定,關(guān)鍵是掌握全等三角形的判定定理.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、540°【解析】
根據(jù)多邊形的外角和為360°,因此可以求出多邊形的邊數(shù)為360°÷72°=5,根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,可得(5-2)×180°=540°.考點(diǎn):多邊形的內(nèi)角和與外角和12、9,>【解析】
(1)根據(jù)任意多邊形外角和等于360可以得到正多邊形的邊數(shù)(2)用科學(xué)計(jì)算器計(jì)算即可比較大小.【詳解】(1)正多邊形的一個(gè)外角是40°,任意多邊形外角和等于360(2)利用科學(xué)計(jì)算器計(jì)算可知,sin37.5°.故答案為(1).9,(2).>【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)正多邊形外交和的理解,掌握正多邊形外角和,會(huì)用科學(xué)計(jì)算器是解題的關(guān)鍵.13、【解析】
在直角△ABD中利用勾股定理求得AD的長(zhǎng),然后利用正弦的定義求解.【詳解】在直角△ABD中,BD=1,AB=2,則AD===,則sinA===.故答案是:.14、3【解析】分析:由已知條件易得:EF∥AB,且EF:AB=1:2,從而可得△CEF∽△CAB,且相似比為1:2,設(shè)S△CEF=x,根據(jù)相似三角形的性質(zhì)可得方程:,解此方程即可求得△EFC的面積.詳解:∵在△ABC中,點(diǎn)E,F(xiàn)分別是AC,BC的中點(diǎn),∴EF是△ABC的中位線,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,設(shè)S△CEF=x,∵S△CAB=S△CEF+S四邊形ABFE,S四邊形ABFE=9,∴,解得:,經(jīng)檢驗(yàn):是所列方程的解.故答案為:3.點(diǎn)睛:熟悉三角形的中位線定理和相似三角形的面積比等于相似比的平方是正確解答本題的關(guān)鍵.15、【解析】
解:連接AG,由旋轉(zhuǎn)變換的性質(zhì)可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,則AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案為.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、相似三角形的判定和性質(zhì),掌握勾股定理、矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.16、0.1【解析】試題解析:原式=2.05×10-3=0.1.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法-原數(shù),用科學(xué)記數(shù)法表示的數(shù)還原成原數(shù)時(shí),n>0時(shí),n是幾,小數(shù)點(diǎn)就向右移幾位;n<0時(shí),n是幾,小數(shù)點(diǎn)就向左移幾位.三、解答題(共8題,共72分)17、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點(diǎn)坐標(biāo)及對(duì)稱軸,可設(shè)出M點(diǎn)坐標(biāo),表示出MC、MP和PC的長(zhǎng),分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)的坐標(biāo);(3)過E作EF⊥x軸,交直線BC于點(diǎn)F,交x軸于點(diǎn)D,可設(shè)出E點(diǎn)坐標(biāo),表示出F點(diǎn)的坐標(biāo),表示出EF的長(zhǎng),進(jìn)一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時(shí)E點(diǎn)的坐標(biāo).試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點(diǎn)B、點(diǎn)C,∴B(3,0),C(0,3),把B、C坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對(duì)稱軸為x=2,P(2,﹣1),設(shè)M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當(dāng)MC=MP時(shí),則有=|t+1|,解得t=,此時(shí)M(2,);②當(dāng)MC=PC時(shí),則有=2,解得t=﹣1(與P點(diǎn)重合,舍去)或t=7,此時(shí)M(2,7);③當(dāng)MP=PC時(shí),則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時(shí)M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點(diǎn)M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點(diǎn)F,交x軸于點(diǎn)D,設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當(dāng)x=時(shí),△CBE的面積最大,此時(shí)E點(diǎn)坐標(biāo)為(,),即當(dāng)E點(diǎn)坐標(biāo)為(,)時(shí),△CBE的面積最大.考點(diǎn):二次函數(shù)綜合題.18、(1),;(2);(3).【解析】試題分析:(1)利用航模小組先求出數(shù)據(jù)總數(shù),再求出n.(2)小組所占圓心角=;(3)列表格求概率.試題解析:(1);(2);(3)將選航模項(xiàng)目的名男生編上號(hào)碼,將名女生編上號(hào)碼.用表格列出所有可能出現(xiàn)的結(jié)果:由表格可知,共有種可能出現(xiàn)的結(jié)果,并且它們都是第可能的,其中“名男生、名女生”有種可能.(名男生、名女生).(如用樹狀圖,酌情相應(yīng)給分)考點(diǎn):統(tǒng)計(jì)與概率的綜合運(yùn)用.19、(1)見解析;(2)見解析;(3)AB=1【解析】
(1)由垂徑定理得出∠CPB=∠BCD,根據(jù)∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據(jù)此可得2∠APG=∠F,據(jù)此即可得證;(3)連接AE,取AE中點(diǎn)N,連接HN、PN,過點(diǎn)E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設(shè)PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據(jù)此求得k=2,從而得出AP、BP的長(zhǎng),利用勾股定理可得答案.【詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)連接AE,取AE中點(diǎn)N,連接HN、PN,過點(diǎn)E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四點(diǎn)共圓,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,則,∴,∴MF=GP,∵3PF=5PG,∴,設(shè)PG=3k,則PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=EF=5k,則EM=4k,∴tan∠PEM=,tan∠F=,∴tan∠PAE=,∵PE=,∴AP=k,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,則tan∠ABP=tan∠PEM,即,∴,則BP=3k,∴BE=k=2,則k=2,∴AP=3、BP=6,根據(jù)勾股定理得,AB=1.【點(diǎn)睛】本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握?qǐng)A周角定理、四點(diǎn)共圓條件、相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識(shí)點(diǎn).20、(1)作圖見解析;;(2)作圖見解析.【解析】試題分析:(1)通過數(shù)格子可得到點(diǎn)P關(guān)于AC的對(duì)稱點(diǎn),再直接利用勾股定理可得到周長(zhǎng);(2)利用網(wǎng)格結(jié)合矩形的性質(zhì)以及勾股定理可畫出矩形.試題解析:(1)如圖1所示:四邊形AQCP即為所求,它的周長(zhǎng)為:;(2)如圖2所示:四邊形ABCD即為所求.考點(diǎn):1軸對(duì)稱;2勾股定理.21、(1)作圖見解析;(2)3;(3)【解析】
(1)根據(jù)發(fā)了3條箴言的人數(shù)與所占的百分比列式計(jì)算即可求出該班全體團(tuán)員的總?cè)藬?shù)為12,再求出發(fā)了4條箴言的人數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可;(2)利用該班團(tuán)員在這一個(gè)月內(nèi)所發(fā)箴言的總條數(shù)除以總?cè)藬?shù)即可求得結(jié)果;(3)列舉出所有情況,看恰好是一位男同學(xué)和一位女同學(xué)占總情況的多少即可.【詳解】解:(1)該班團(tuán)員人數(shù)為:3÷25%=12(人),發(fā)了4條贈(zèng)言的人數(shù)為:12?2?2?3?1=4(人),將條形統(tǒng)計(jì)圖補(bǔ)充完整如下:(2)該班團(tuán)員所發(fā)贈(zèng)言的平均條數(shù)為:(2×1+2×2+3×3+4×4+1×5)÷12=3,故答案為:3;(3)∵發(fā)了3條箴言的同學(xué)中有兩位男同學(xué),發(fā)了4條箴言的同學(xué)中有三位女同學(xué),∴發(fā)了3條箴言的同學(xué)中有一位女同學(xué),發(fā)了4條箴言的同學(xué)中有一位男同學(xué),方法一:列表得:共有12種結(jié)果,且每種結(jié)果的可能性相同,所選兩位同學(xué)中恰好是一位男同學(xué)和一位女同學(xué)的情況有7種,所選兩位同學(xué)中恰好是一位男同學(xué)和一位女同學(xué)的概率為:;方法二
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋建筑實(shí)習(xí)報(bào)告錦集5篇
- 學(xué)生撒謊檢討書15篇
- 教育目的心得模板10篇
- 產(chǎn)科護(hù)士工作心得體會(huì)8篇
- 疾病查房-帕金森病(護(hù)理類)課件
- 海事處廉政教育月黨課
- 七年級(jí)信息技術(shù)教案
- 七年級(jí)美術(shù)的說課稿10篇
- 浙江省紹興市職業(yè)教育中心2024-2025學(xué)年高一上學(xué)期期中考試中國(guó)特色社會(huì)主義試題
- 借款協(xié)議書(2篇)
- 模擬電子技術(shù)課件(完整版)
- 注塑領(lǐng)班作業(yè)指導(dǎo)書
- 廣東省異地就醫(yī)備案登記表
- 光纜布線工程施工組織設(shè)計(jì)方案
- 食堂日常考核評(píng)分表(后勤)
- 高頻淬火設(shè)備安全操作規(guī)程
- 閘閥的操作力矩參考表
- 環(huán)氧樹脂參考配方大全
- 花木綠化養(yǎng)護(hù)考核評(píng)分表
- #2鍋爐爐膛內(nèi)腳手架搭設(shè)及拆除施工方案
- 110KV變電站工程創(chuàng)優(yōu)監(jiān)理實(shí)施細(xì)則
評(píng)論
0/150
提交評(píng)論