2023年初中七年級數(shù)學(xué)教案范文格式_第1頁
2023年初中七年級數(shù)學(xué)教案范文格式_第2頁
2023年初中七年級數(shù)學(xué)教案范文格式_第3頁
2023年初中七年級數(shù)學(xué)教案范文格式_第4頁
2023年初中七年級數(shù)學(xué)教案范文格式_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第2023年初中七年級數(shù)學(xué)教案范文格式2023年初中七年級數(shù)學(xué)教案范文格式

數(shù)學(xué)老師在教學(xué)上要以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標準》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。以下是小編整理的初中七年級數(shù)學(xué)教案,希望可以提供給大家進行參考和借鑒。

初中七年級數(shù)學(xué)教案范文一:有理數(shù)的加法

教學(xué)目標:1、使學(xué)生在現(xiàn)實情境中理解有理數(shù)加法的意義

2、經(jīng)歷探索有理數(shù)加法法則的過程,掌握有理數(shù)加法法則,并能準確地進行加法運算。[]

3、在教學(xué)中適當滲透分類討論思想。

重點:有理數(shù)的加法法則

重點:異號兩數(shù)相加的法則

教學(xué)過程:

二、講授新課

1、同號兩數(shù)相加的法則

問題:一個物體作左右方向的運動,我們規(guī)定向左為負,向右為正。向右運動5m記作5m,向左運動5m記作-5m。如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結(jié)果是多少

學(xué)生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)

教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結(jié)果是多少

學(xué)生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)

師生共同歸納法則:同號兩數(shù)相加,取與加數(shù)相同的符號,并把絕對值相加。

2、異號兩數(shù)相加的法則

教師:如果物體先向右運動5m,再向左運動3m,那么兩次運動后物體從起點向哪個方向運動了多少米

學(xué)生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)

師生借此結(jié)論引導(dǎo)學(xué)生歸納異號兩數(shù)相加的法則:異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

3、互為相反數(shù)的兩個數(shù)相加得零。

教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結(jié)果是多少

學(xué)生回答:經(jīng)過兩次運動后,物體又回到了原點。也就是物體運動了0m。

師生共同歸納出:互為相反數(shù)的兩個數(shù)相加得零

教師:你能用加法法則來解釋這個法則嗎

學(xué)生回答:可用異號兩數(shù)相加的法則來解釋。

一般地,還有一個數(shù)同0相加,仍得這個數(shù)。

三、鞏固知識

課本P18例1,例2、課本P118練習1、2題

四、總結(jié)

運算的關(guān)鍵:先分類,再按法則運算;

運算的步驟:先確定符號,再計算絕對值。

注意:要借用數(shù)軸來進一步驗證有理數(shù)的加法法則;異號兩數(shù)相加,首先要確定符號,再把絕對值相加。

五、布置作業(yè)

課本P24習題1.3第1、7題。

初中七年級數(shù)學(xué)教案范文二:絕對值

一、教學(xué)目標設(shè)計

[知識與技能目標]

1、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個負數(shù)的大小。

2、通過應(yīng)用絕對值解決實際問題,體會絕對值的意義和作用。

[過程與方法目標]

限度的發(fā)揮學(xué)生的主體參與,讓學(xué)生在教師的引導(dǎo)啟發(fā),師生的交流與探索下,輕松愉快地學(xué)到新知識。

[情感態(tài)度與價值觀]

借助數(shù)軸解決數(shù)學(xué)問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結(jié)合思想,讓學(xué)生采取自主探索,合作交流的學(xué)習方式。

二、教材解讀

借助數(shù)軸引出對絕對值的概念,并通過計算、觀察、交流、發(fā)現(xiàn)絕對值的性質(zhì)特征,利用絕對值來比較兩個負數(shù)的大小。

讓學(xué)生直觀理解絕對值的含義,不要在絕對值符號內(nèi)部出現(xiàn)多重符號和

字母,多鼓勵學(xué)生通過觀察、歸納、驗證。

、教學(xué)過程設(shè)計與分析

一、情境導(dǎo)入

[課件展示,激趣感知]

博物館、農(nóng)場到學(xué)校與學(xué)校到博物館農(nóng)場的距離的關(guān)系。

[媒體展示課件,認知生活中的有些問題]

不考慮相反意義,只考慮具體數(shù)值。

[創(chuàng)設(shè)情境,實例導(dǎo)入]利用動畫展示,讓學(xué)生在有趣的圖畫中感受絕對值激發(fā)學(xué)生的興趣。

實物的形象符合學(xué)生心理,學(xué)生興趣很高,踴躍發(fā)言,95%的學(xué)生能順利的解決問題。

師生互動

[提出問題,引發(fā)討論]

1、引導(dǎo)學(xué)生得出絕對值定義及表示方法。

2、同桌之間互相舉例。

[展示:啟發(fā)學(xué)生交流了解絕對值]

歸納絕對值概念,教師指出表示方法。

[師生互動、探索新知]:學(xué)生根據(jù)情境感知初步認知絕對值,并通過對其概念的理解求解一個數(shù)的絕對值。

同桌之間舉例,效果良好,體現(xiàn)了“自主——協(xié)作”學(xué)習。

閱讀課文,互動探索

求解各數(shù)的絕對值后討論

1、想一想互為相反數(shù)的兩個數(shù)的絕對值有什么關(guān)系學(xué)生舉例,并進行觀察、比較、歸納。

2、議一議一個數(shù)的絕對值與這個數(shù)有什么關(guān)系小組討論、交流教師引導(dǎo)學(xué)生用自己的語言描述所得結(jié)論教師質(zhì)疑:一個數(shù)的絕對值是否為負數(shù)學(xué)生通過分析理解絕對值的內(nèi)在涵義。

閱讀課文:從各數(shù)的絕對值歸納絕對值的代數(shù)意義。

[閱讀課文:“想一想]提出問題,引起學(xué)生的思考。

[閱讀課文:“議一議]

學(xué)生分析各類數(shù)的絕對值與本身的關(guān)系,并對教師的質(zhì)疑進行深究。

[趣引妙答,思路點撥]通過學(xué)生舉例思考,對互為相反數(shù)的兩個數(shù)的絕對值進行觀察對比,從而得到它們的關(guān)系。

學(xué)生從“特殊——一般”分類歸納絕對值的代數(shù)意義,并通過歸納總結(jié)出絕對值的內(nèi)在涵義,體現(xiàn)學(xué)生的主體性。

積極調(diào)動學(xué)生的思維,使學(xué)生在協(xié)商、討論中將問題逐漸明朗化、具體化,在共享集體思維成果的基礎(chǔ)上達到對當前所學(xué)內(nèi)容比較全面、正確的理解。

3、做一做

[激趣探知]

教師出示過關(guān)題目

學(xué)生通過自主探索最終找到兩個負數(shù)比較大小的方法,絕對值大的反而小。

師生歸納兩頁數(shù)比較大小的兩種方法。

[探索用絕對值比較兩負數(shù)的方法]

體驗概念的形式過程

舊知識的引用,讓學(xué)生在輕松愉快的環(huán)境中獲取新知,從已有知識逐漸到新知識,不但可激發(fā)學(xué)生的興趣,并且培養(yǎng)學(xué)生的探索精神,同時分解了本節(jié)的難點。

從舊知識層層引入,學(xué)生興趣十足,提高了教學(xué)效果,突破了難點,學(xué)生接受輕而易舉。

鞏固練習

[絕對值比較兩負數(shù)大小的運用]

情境:比較下列每組數(shù)的大小。

[媒體展示,出示習題]:

運用絕對值比較負數(shù)大小。

[變成訓(xùn)練,鞏固反饋]

繼續(xù)對絕對值比較負數(shù)大小進行鞏固練習。

由以上練習層層深入,學(xué)生解決問題的能力大大提高,并且印象深刻。

知識延伸

[學(xué)生探究,教師點撥]

[媒體展示]

絕對值定義,代數(shù)意義及內(nèi)在涵義的的靈活應(yīng)用。

[知識延伸,目標升華]

充分發(fā)揮學(xué)生的自主探索能力,使學(xué)生能夠深入、細致的理解知識點。

學(xué)生能夠互相評點,共同探索,既發(fā)展了自主學(xué)習能力,又強化了協(xié)作精神。

七、教學(xué)板書設(shè)計

絕對值

概念正數(shù)的絕對值是它本身

絕對值代數(shù)意義0的絕對值是0非負數(shù)

表示方法||負數(shù)的絕對值是它的相反數(shù)

如:|-2|=2|+3|=3絕對值最小的數(shù)是0

初中七年級數(shù)學(xué)教案范文三:完全平方公式

一、內(nèi)容簡介

本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

關(guān)鍵信息:

1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標準》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

2、用標準的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴謹,啟迪學(xué)習態(tài)度和方法。

二、學(xué)習者分析:

1、在學(xué)習本課之前應(yīng)具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學(xué)習者對即將學(xué)習的內(nèi)容已經(jīng)具備的水平:

在學(xué)習完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

三、教學(xué)/學(xué)習目標及其對應(yīng)的課程標準:

(一)教學(xué)目標:

1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理

數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同

角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難

和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

四、教育理念和教學(xué)方式:

1、教師是學(xué)生學(xué)習的組織者、促進者、合作者:學(xué)生是學(xué)習的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

教學(xué)是師生交往、積極互動、共同發(fā)展的過程。當學(xué)生迷路的時

候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當學(xué)生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。

2、采用“問題情景—探究交流—得出結(jié)論—強化訓(xùn)練”的模式

展開教學(xué)。

3、教學(xué)評價方式:

(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動中的主

動參與程度與合作交流意識,及時給與鼓勵、強化、指導(dǎo)和矯正。

(2)通過判斷和舉例,給學(xué)生更多機會,在自然放松的狀態(tài)下,

揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。

(3)通過課后訪談和作業(yè)分析,及時查漏補缺,確保達到預(yù)期的

教學(xué)效果。

五、教學(xué)媒體:多媒體六、教學(xué)和活動過程:

教學(xué)過程設(shè)計如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結(jié)果的項數(shù)特點。

(3)三項系數(shù)的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、小試牛刀

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學(xué)生小結(jié)]

你認為完全平方公式在應(yīng)用過程中,需要注意那些問題

(1)公式右邊共有3項。

(2)兩個平方項符號永遠為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、冒險島:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=______________

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論