2023屆貴州省興仁縣達標名校中考四模數(shù)學試題含解析_第1頁
2023屆貴州省興仁縣達標名校中考四模數(shù)學試題含解析_第2頁
2023屆貴州省興仁縣達標名校中考四模數(shù)學試題含解析_第3頁
2023屆貴州省興仁縣達標名校中考四模數(shù)學試題含解析_第4頁
2023屆貴州省興仁縣達標名校中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.甲、乙兩人同時分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時.結(jié)果兩人同時到達C地.求兩人的平均速度,為解決此問題,設(shè)乙騎自行車的平均速度為x千米/時.由題意列出方程.其中正確的是()A. B. C. D.2.分式有意義,則x的取值范圍是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣73.計算的結(jié)果等于()A.-5 B.5 C. D.4.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數(shù)為(

)A.35° B.45° C.55° D.65°5.如圖,在?ABCD中,AB=1,AC=4,對角線AC與BD相交于點O,點E是BC的中點,連接AE交BD于點F.若AC⊥AB,則FD的長為()A.2 B.3 C.4 D.66.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐7.在對某社會機構(gòu)的調(diào)查中收集到以下數(shù)據(jù),你認為最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是()年齡13141525283035其他人數(shù)30533171220923A.平均數(shù) B.眾數(shù) C.方差 D.標準差8.如圖,在正方形網(wǎng)格中建立平面直角坐標系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,19.如圖,是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是()A.10π B.15π C.20π D.30π10.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉(zhuǎn)120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°11.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,則下列結(jié)論,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正確的有()A.1個 B.2個 C.3個 D.412.下列四個圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個正n邊形的中心角等于18°,那么n=_____.14.為了綠化校園,30名學生共種78棵樹苗,其中男生每人種3棵,女生每人種2棵,設(shè)男生有x人,女生有y人,根據(jù)題意,所列方程組正確的是()A. B. C. D.15.5月份,甲、乙兩個工廠用水量共為200噸.進入夏季用水高峰期后,兩工廠積極響應國家號召,采取節(jié)水措施.6月份,甲工廠用水量比5月份減少了15%,乙工廠用水量比5月份減少了10%,兩個工廠6月份用水量共為174噸,求兩個工廠5月份的用水量各是多少.設(shè)甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)題意列關(guān)于x,y的方程組為__.16.如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點E、F分別在菱形的邊BC、CD上滑動,且E、F不與B、C、D重合.當點E、F在BC、CD上滑動時,則△CEF的面積最大值是____.17.邊長為6的正六邊形外接圓半徑是_____.18.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉(zhuǎn),使點C旋轉(zhuǎn)到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm1.(結(jié)果保留π).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,求AE的長.20.(6分)如圖,點A是反比例函數(shù)y1=4x與一次函數(shù)y2=kx+b在x軸上方的圖象的交點,過點A作AC⊥x軸,垂足是點C,AC=OC.一次函數(shù)求點A的坐標;若梯形ABOC的面積是3,求一次函數(shù)y2=kx+b的解析式;結(jié)合這兩個函數(shù)的完整圖象:當y1>21.(6分)已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學興趣小組的同學在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結(jié)果精確到1米).22.(8分)爸爸和小芳駕車去郊外登山,欣賞美麗的達子香(興安杜鵑),到了山下,爸爸讓小芳先出發(fā)6min,然后他再追趕,待爸爸出發(fā)24min時,媽媽來電話,有急事,要求立即回去.于是爸爸和小芳馬上按原路下山返回(中間接電話所用時間不計),二人返回山下的時間相差4min,假設(shè)小芳和爸爸各自上、下山的速度是均勻的,登山過程中小芳和爸爸之間的距離s(單位:m)關(guān)于小芳出發(fā)時間t(單位:min)的函數(shù)圖象如圖,請結(jié)合圖象信息解答下列問題:(1)小芳和爸爸上山時的速度各是多少?(2)求出爸爸下山時CD段的函數(shù)解析式;(3)因山勢特點所致,二人相距超過120m就互相看不見,求二人互相看不見的時間有多少分鐘?23.(8分)在某校舉辦的2012年秋季運動會結(jié)束之后,學校需要為參加運動會的同學們發(fā)紀念品.小王負責到某商場買某種紀念品,該商場規(guī)定:一次性購買該紀念品200個以上可以按折扣價出售;購買200個以下(包括200個)只能按原價出售.小王若按照原計劃的數(shù)量購買紀念品,只能按原價付款,共需要1050元;若多買35個,則按折扣價付款,恰好共需1050元.設(shè)小王按原計劃購買紀念品x個.(1)求x的范圍;(2)如果按原價購買5個紀念品與按打折價購買6個紀念品的錢數(shù)相同,那么小王原計劃購買多少個紀念品?24.(10分)如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4).請在圖中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.25.(10分)反比例函數(shù)的圖象經(jīng)過點A(2,3).(1)求這個函數(shù)的解析式;(2)請判斷點B(1,6)是否在這個反比例函數(shù)的圖象上,并說明理由.26.(12分)為了了解學生關(guān)注熱點新聞的情況,“兩會”期間,小明對班級同學一周內(nèi)收看“兩會”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計如圖所示(其中男生收看次的人數(shù)沒有標出).根據(jù)上述信息,解答下列各題:×(1)該班級女生人數(shù)是__________,女生收看“兩會”新聞次數(shù)的中位數(shù)是________;(2)對于某個群體,我們把一周內(nèi)收看某熱點新聞次數(shù)不低于次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體對某熱點新聞的“關(guān)注指數(shù)”.如果該班級男生對“兩會”新聞的“關(guān)注指數(shù)”比女生低,試求該班級男生人數(shù);(3)為進一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點,小明給出了男生的部分統(tǒng)計量(如表).統(tǒng)計量平均數(shù)(次)中位數(shù)(次)眾數(shù)(次)方差…該班級男生…根據(jù)你所學過的統(tǒng)計知識,適當計算女生的有關(guān)統(tǒng)計量,進而比較該班級男、女生收看“兩會”新聞次數(shù)的波動大小.27.(12分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】設(shè)乙騎自行車的平均速度為x千米/時,則甲騎自行車的平均速度為(x+2)千米/時,根據(jù)題意可得等量關(guān)系:甲騎110千米所用時間=乙騎100千米所用時間,根據(jù)等量關(guān)系可列出方程即可.解:設(shè)乙騎自行車的平均速度為x千米/時,由題意得:=,故選A.2、A【解析】

直接利用分式有意義則分母不為零進而得出答案.【詳解】解:分式有意義,則x﹣1≠0,解得:x≠1.故選:A.【點睛】此題主要考查了分式有意義的條件,正確把握分式的定義是解題關(guān)鍵.當分母不等于零時,分式有意義;當分母等于零時,分式無意義.分式是否有意義與分子的取值無關(guān).3、A【解析】

根據(jù)有理數(shù)的除法法則計算可得.【詳解】解:15÷(-3)=-(15÷3)=-5,

故選:A.【點睛】本題主要考查有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負,并把絕對值相除.4、C【解析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.5、C【解析】

利用平行四邊形的性質(zhì)得出△ADF∽△EBF,得出=,再根據(jù)勾股定理求出BO的長,進而得出答案.【詳解】解:∵在□ABCD中,對角線AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴=,∵AC=4,∴AO=2,∵AB=1,AC⊥AB,∴BO===3,∴BD=6,∵E是BC的中點,∴==,∴BF=2,F(xiàn)D=4.故選C.【點睛】本題考查了勾股定理與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握勾股定理與相似三角形的判定與性質(zhì).6、C【解析】分析:根據(jù)一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據(jù)俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.7、B【解析】分析:根據(jù)平均數(shù)的意義,眾數(shù)的意義,方差的意義進行選擇.詳解:由于14歲的人數(shù)是533人,影響該機構(gòu)年齡特征,因此,最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是眾數(shù).故選B.點睛:本題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.8、C【解析】

根據(jù)A點坐標即可建立平面直角坐標.【詳解】解:由A(0,2),B(1,1)可知原點的位置,

建立平面直角坐標系,如圖,

∴C(2,-1)

故選:C.【點睛】本題考查平面直角坐標系,解題的關(guān)鍵是建立直角坐標系,本題屬于基礎(chǔ)題型.9、B【解析】由三視圖可知此幾何體為圓錐,∴圓錐的底面半徑為3,母線長為5,∵圓錐的底面周長等于圓錐的側(cè)面展開扇形的弧長,∴圓錐的底面周長=圓錐的側(cè)面展開扇形的弧長=2πr=2π×3=6π,∴圓錐的側(cè)面積=lr=×6π×5=15π,故選B10、D【解析】已知△ABC繞點A按逆時針方向旋轉(zhuǎn)l20°得到△AB′C′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.11、B【解析】

由拋物線的開口方向判斷a與1的關(guān)系,由拋物線與y軸的交點判斷c與1的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①拋物線與y軸交于負半軸,則c<1,故①正確;②對稱軸x1,則2a+b=1.故②正確;③由圖可知:當x=1時,y=a+b+c<1.故③錯誤;④由圖可知:拋物線與x軸有兩個不同的交點,則b2﹣4ac>1.故④錯誤.綜上所述:正確的結(jié)論有2個.故選B.【點睛】本題考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的值求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.12、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,也是中心對稱圖形,故此選項正確.故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、20【解析】

由正n邊形的中心角為18°,可得方程18n=360,解方程即可求得答案.【詳解】∵正n邊形的中心角為18°,∴18n=360,∴n=20.故答案為20.【點睛】本題考查的知識點是正多邊形和圓,解題的關(guān)鍵是熟練的掌握正多邊形和圓.14、A【解析】

該班男生有x人,女生有y人.根據(jù)題意得:,故選D.考點:由實際問題抽象出二元一次方程組.15、x+y=200(1-15%)x+(1-10%)y=174【解析】

甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)甲、乙兩廠5月份用水量與6月份用水量列出關(guān)于x、y的方程組即可.【詳解】甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)題意得:x+y=200(1-15%)x+(1-10%)y=174故答案為:x+y=200(1-15%)x+(1-10%)y=174【點睛】本題考查了二元一次方程組的應用,弄清題意,找準等量關(guān)系是解題的關(guān)鍵.16、【解析】解:如圖,連接AC,∵四邊形ABCD為菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD為等邊三角形,∴∠4=60°,AC=AB.在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H點,則BH=2,∴S四邊形AECF=S△ABC=BC?AH=BC?=,由“垂線段最短”可知:當正三角形AEF的邊AE與BC垂直時,邊AE最短,∴△AEF的面積會隨著AE的變化而變化,且當AE最短時,正三角形AEF的面積會最小,又∵S△CEF=S四邊形AECF﹣S△AEF,則此時△CEF的面積就會最大,∴S△CEF=S四邊形AECF﹣S△AEF=﹣××=.故答案為:.點睛:本題主要考查了菱形的性質(zhì)、全等三角形判定與性質(zhì)及三角形面積的計算,根據(jù)△ABE≌△ACF,得出四邊形AECF的面積是定值是解題的關(guān)鍵.17、6【解析】

根據(jù)正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,∴邊長為6的正六邊形外接圓半徑是6,故答案為:6.【點睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形是解題的關(guān)鍵.18、9π【解析】

根據(jù)直角三角形兩銳角互余求出∠BAC=30°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得BC=AB,然后求出陰影部分的面積=S扇形ABE﹣S扇形BCD,列計算即可得解.【詳解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=AB=×6=3(cm),∵△ABC以點B為中心順時針旋轉(zhuǎn)得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴陰影部分的面積=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=﹣=11π﹣3π=9π(cm1).故答案為9π.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),扇形的面積計算,直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),求出陰影部分的面積等于兩個扇形的面積的差是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)詳見解析;(3)AE=.【解析】

(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得AE的長.【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當時,S△BEF+S△COF最大;即在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,【點睛】本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問題.注意掌握轉(zhuǎn)化思想的應用是解此題的關(guān)鍵.20、(1)點A的坐標為(2,2);(2)y=12x+1;(3)x<-4【解析】

(1)點A在反比例函數(shù)y1=4x上,AC⊥x軸,(2)梯形面積=12(OB+2)×2=3,求出B點坐標,將點A(3)結(jié)合圖象直接可求解;【詳解】解:(1)∵點A在y1=4x的圖像上,∴AC?OC=4,∴AC=OC=2∴點A的坐標為(2,2);(2)∵梯形ABOC的面積是3,∴12解得OB=1,∴點B的坐標為(0,1),把點A(2,2)與B(0,1)代入y得2=2k+b解得:k=12,∴一次函數(shù)y2=kx+b的解析式為(3)由題意可知,作出函數(shù)y1=4設(shè)函數(shù)y1=4∴聯(lián)立y1=4∴點E的坐標為(-4,-1)∵y1>y2即∴可將圖像分割成如下圖所示:由圖像可知y1>y2所對應的自變量的取值范圍為:【點睛】本題考查反比例函數(shù)和一次函數(shù)的圖形及性質(zhì);能夠熟練掌握待定系數(shù)法求函數(shù)的表達式,數(shù)形結(jié)合求x的取值范圍是解題的關(guān)鍵.21、(1)坡頂?shù)降孛娴木嚯x為米;移動信號發(fā)射塔的高度約為米.【解析】

延長BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由題意BH=PH.設(shè)BC=x.則x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根據(jù)tan76°=,構(gòu)建方程求出x即可.【詳解】延長BC交OP于H.∵斜坡AP的坡度為1:2.4,∴,設(shè)AD=5k,則PD=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四邊形ADHC是矩形,CH=AD=10,AC=DH,∵∠BPD=45°,∴PH=BH,設(shè)BC=x,則x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.1.解得:x≈18.7,經(jīng)檢驗x≈18.7是原方程的解.答:古塔BC的高度約為18.7米.【點睛】本題主要考查了解直角三角形,用到的知識點是勾股定理,銳角三角函數(shù),坡角與坡角等,解決本題的關(guān)鍵是作出輔助線,構(gòu)造直角三角形.22、(1)小芳上山的速度為20m/min,爸爸上山的速度為28m/min;(2)爸爸下山時CD段的函數(shù)解析式為y=12x﹣288(24≤x≤40);(3)二人互相看不見的時間有7.1分鐘.【解析】分析:(1)根據(jù)速度=路程÷時間可求出小芳上山的速度;根據(jù)速度=路程÷時間+小芳的速度可求出爸爸上山的速度;

(2)根據(jù)爸爸及小芳的速度結(jié)合點C的橫坐標(6+24=30),可得出點C的坐標,由點D的橫坐標比點E少4可得出點D的坐標,再根據(jù)點C、D的坐標利用待定系數(shù)法可求出CD段的函數(shù)解析式;

(3)根據(jù)點D、E的坐標利用待定系數(shù)法可求出DE段的函數(shù)解析式,分別求出CD、DE段縱坐標大于120時x的取值范圍,結(jié)合兩個時間段即可求出結(jié)論.詳解:(1)小芳上山的速度為120÷6=20(m/min),爸爸上山的速度為120÷(21﹣6)+20=28(m/min).答:小芳上山的速度為20m/min,爸爸上山的速度為28m/min.(2)∵(28﹣20)×(24+6﹣21)=72(m),∴點C的坐標為(30,72);∵二人返回山下的時間相差4min,44﹣4=40(min),∴點D的坐標為(40,192).設(shè)爸爸下山時CD段的函數(shù)解析式為y=kx+b,將C(30,72)、D(40,192)代入y=kx+b,,解得:.答:爸爸下山時CD段的函數(shù)解析式為y=12x﹣288(24≤x≤40).(3)設(shè)DE段的函數(shù)解析式為y=mx+n,將D(40,192)、E(44,0)代入y=mx+n,,解得:,∴DE段的函數(shù)解析式為y=﹣48x+2112(40≤x≤44).當y=12x﹣288>120時,34<x≤40;當y=﹣48x+2112>120時,40≤x<41.1.41.1﹣34=7.1(min).答:二人互相看不見的時間有7.1分鐘.點睛:本題考查了一次函數(shù)的應用、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是:(1)根據(jù)數(shù)量關(guān)系,列式計算;(2)根據(jù)點C、D的坐標,利用待定系數(shù)法求出CD段的函數(shù)解析式;(3)利用一次函數(shù)圖象上點的坐標特征分別求出CD、DE段縱坐標大于120時x的取值范圍.23、(1)0<x≤200,且x是整數(shù)(2)175【解析】

(1)根據(jù)商場的規(guī)定確定出x的范圍即可;(2)設(shè)小王原計劃購買x個紀念品,根據(jù)按原價購買5個紀念品與按打折價購買6個紀念品的錢數(shù)相同列出分式方程,求出解即可得到結(jié)果.【詳解】(1)根據(jù)題意得:0<x≤200,且x為整數(shù);(2)設(shè)小王原計劃購買x個紀念品,根據(jù)題意得:,整理得:5x+175=6x,解得:x=175,經(jīng)檢驗x=175是分式方程的解,且滿足題意,則小王原計劃購買175個紀念品.【點睛】此題考查了分式方程的應用,弄清題中的等量關(guān)系“按原價購買5個紀念品與按打折價購買6個紀念品的錢數(shù)相同”是解本題的關(guān)鍵.24、(1)見解析(2)【解析】試題分析:(1)直接利用平移的性質(zhì)得出對應點位置進而得出答案;(2)利用位似圖形的性質(zhì)得出對應點位置,再利用銳角三角三角函數(shù)關(guān)系得出答案.試題解析:(1)如圖所示:△A1B1C1,即為所求;(2)如圖所示:△A2B2C2,即為所求,由圖形可知,∠A2C2B2=∠ACB,過點A作AD⊥BC交BC的延長線于點D,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論