2023屆山東省淄博市博山區(qū)十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
2023屆山東省淄博市博山區(qū)十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
2023屆山東省淄博市博山區(qū)十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
2023屆山東省淄博市博山區(qū)十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
2023屆山東省淄博市博山區(qū)十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知二次函數(shù)y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關(guān)系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=02.一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們在同一坐標(biāo)系中的圖象可以是()A. B. C. D.3.為豐富學(xué)生課外活動,某校積極開展社團(tuán)活動,開設(shè)的體育社團(tuán)有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.學(xué)生可根據(jù)自己的愛好選擇一項,李老師對八年級同學(xué)選擇體育社團(tuán)情況進(jìn)行調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖),則以下結(jié)論不正確的是()A.選科目E的有5人B.選科目A的扇形圓心角是120°C.選科目D的人數(shù)占體育社團(tuán)人數(shù)的D.據(jù)此估計全校1000名八年級同學(xué),選擇科目B的有140人4.下列運算不正確的是A.a(chǎn)5+C.2a25.如圖分別是某班全體學(xué)生上學(xué)時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結(jié)論錯誤的是()A.該班總?cè)藬?shù)為50 B.步行人數(shù)為30C.乘車人數(shù)是騎車人數(shù)的2.5倍 D.騎車人數(shù)占20%6.若m,n是一元二次方程x2﹣2x﹣1=0的兩個不同實數(shù)根,則代數(shù)式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.17.如圖所示的四張撲克牌背面完全相同,洗勻后背面朝上,則從中任意翻開一張,牌面數(shù)字是3的倍數(shù)的概率為()A. B. C. D.8.已知兩組數(shù)據(jù),2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等9.在下列四個新能源汽車車標(biāo)的設(shè)計圖中,屬于中心對稱圖形的是()A. B. C. D.10.如圖所示,若將△ABO繞點O順時針旋轉(zhuǎn)180°后得到△A1B1O,則A點的對應(yīng)點A1點的坐標(biāo)是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)二、填空題(共7小題,每小題3分,滿分21分)11.已知關(guān)于x方程x2﹣3x+a=0有一個根為1,則方程的另一個根為_____.12.分解因式:a3﹣a=_____.13.已知a+=2,求a2+=_____.14.某校九年級(1)班40名同學(xué)中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個班同學(xué)年齡的中位數(shù)是___歲.15.若關(guān)于的一元二次方程無實數(shù)根,則一次函數(shù)的圖象不經(jīng)過第_________象限.16.如圖,在⊙O中,點B為半徑OA上一點,且OA=13,AB=1,若CD是一條過點B的動弦,則弦CD的最小值為_____.17.在直角三角形ABC中,∠C=90°,已知sinA=35三、解答題(共7小題,滿分69分)18.(10分)如圖,兩座建筑物的水平距離BC為40m,從D點測得A點的仰角為30°,B點的俯角為10°,求建筑物AB的高度(結(jié)果保留小數(shù)點后一位).參考數(shù)據(jù)sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.19.(5分)如圖,AC是的直徑,點B是內(nèi)一點,且,連結(jié)BO并延長線交于點D,過點C作的切線CE,且BC平分.求證:;若的直徑長8,,求BE的長.20.(8分)先化簡,然后從-2≤x≤2的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.21.(10分)先化簡,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.22.(10分)如圖,△DEF是由△ABC通過一次旋轉(zhuǎn)得到的,請用直尺和圓規(guī)畫出旋轉(zhuǎn)中心.23.(12分)如圖,AB為⊙O的直徑,點C,D在⊙O上,且點C是的中點,過點C作AD的垂線EF交直線AD于點E.(1)求證:EF是⊙O的切線;(2)連接BC,若AB=5,BC=3,求線段AE的長.24.(14分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點D是點C關(guān)于拋物線對稱軸的對稱點,連接CD,過點D作DH⊥x軸于點H,過點A作AE⊥AC交DH的延長線于點E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點F,在線段DE上找一點P,且點M為直線PF上方拋物線上的一點,求當(dāng)△CPF的周長最小時,△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點K,則是否存在這樣的點K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

拋物線的頂點坐標(biāo)為P(?,),設(shè)A、B兩點的坐標(biāo)為A(,0)、B(,0)則AB=,根據(jù)根與系數(shù)的關(guān)系把AB的長度用b、c表示,而S△APB=1,然后根據(jù)三角形的面積公式就可以建立關(guān)于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設(shè)=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關(guān)系、拋物線頂點坐標(biāo)公式、三角形的面積公式等知識,綜合性比較強.2、C【解析】

根據(jù)一次函數(shù)的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負(fù)半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項不正確;B.由一次函數(shù)圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數(shù)y=的圖象過二、四象限,所以此選項不正確;C.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負(fù)半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項正確;D.由一次函數(shù)圖象過二、四象限,得a<0,交y軸負(fù)半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數(shù)的圖象,一次函數(shù)的圖象,解題關(guān)鍵在于確定a、b的大小3、B【解析】

A選項先求出調(diào)查的學(xué)生人數(shù),再求選科目E的人數(shù)來判定,B選項先求出A科目人數(shù),再利用×360°判定即可,C選項中由D的人數(shù)及總?cè)藬?shù)即可判定,D選項利用總?cè)藬?shù)乘以樣本中B人數(shù)所占比例即可判定.【詳解】解:調(diào)查的學(xué)生人數(shù)為:12÷24%=50(人),選科目E的人數(shù)為:50×10%=5(人),故A選項正確,選科目A的人數(shù)為50﹣(7+12+10+5)=16人,選科目A的扇形圓心角是×360°=115.2°,故B選項錯誤,選科目D的人數(shù)為10,總?cè)藬?shù)為50人,所以選科目D的人數(shù)占體育社團(tuán)人數(shù)的,故C選項正確,估計全校1000名八年級同學(xué),選擇科目B的有1000×=140人,故D選項正確;故選B.【點睛】本題主要考查了條形統(tǒng)計圖及扇形統(tǒng)計圖,解題的關(guān)鍵是讀懂統(tǒng)計圖,從統(tǒng)計圖中找到準(zhǔn)確信息.4、B【解析】(-2a5、B【解析】

根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總?cè)藬?shù),然后根據(jù)百分比的含義即可求得步行的人數(shù),以及騎車人數(shù)所占的比例.【詳解】A、總?cè)藬?shù)是:25÷50%=50(人),故A正確;B、步行的人數(shù)是:50×30%=15(人),故B錯誤;C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%÷20%=2.5,故C正確;D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.6、B【解析】

把m代入一元二次方程,可得,再利用兩根之和,將式子變形后,整理代入,即可求值.【詳解】解:∵若,是一元二次方程的兩個不同實數(shù)根,∴,∴∴故選B.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,及一元二次方程的解,熟記根與系數(shù)關(guān)系的公式.7、C【解析】

根據(jù)題意確定所有情況的數(shù)目,再確定符合條件的數(shù)目,根據(jù)概率的計算公式即可.【詳解】解:由題意可知,共有4種情況,其中是3的倍數(shù)的有6和9,∴是3的倍數(shù)的概率,故答案為:C.【點睛】本題考查了概率的計算,解題的關(guān)鍵是熟知概率的計算公式.8、D【解析】

分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進(jìn)而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關(guān)鍵是熟練掌握這三種數(shù)的計算方法.9、D【解析】

根據(jù)中心對稱圖形的概念求解.【詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【點睛】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.10、A【解析】

由題意可知,點A與點A1關(guān)于原點成中心對稱,根據(jù)圖象確定點A的坐標(biāo),即可求得點A1的坐標(biāo).【詳解】由題意可知,點A與點A1關(guān)于原點成中心對稱,∵點A的坐標(biāo)是(﹣3,2),∴點A關(guān)于點O的對稱點A'點的坐標(biāo)是(3,﹣2).故選A.【點睛】本題考查了中心對稱的性質(zhì)及關(guān)于原點對稱點的坐標(biāo)的特征,熟知中心對稱的性質(zhì)及關(guān)于原點對稱點的坐標(biāo)的特征是解決問題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】分析:設(shè)方程的另一個根為m,根據(jù)兩根之和等于-,即可得出關(guān)于m的一元一次方程,解之即可得出結(jié)論.詳解:設(shè)方程的另一個根為m,根據(jù)題意得:1+m=3,解得:m=1.故答案為1.點睛:本題考查了根與系數(shù)的關(guān)系,牢記兩根之和等于-是解題的關(guān)鍵.12、a(a+1)(a﹣1)【解析】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案為:a(a+1)(a﹣1).13、1【解析】試題分析:∵==4,∴=4-1=1.故答案為1.考點:完全平方公式.14、1.【解析】

根據(jù)中位數(shù)的定義找出第20和21個數(shù)的平均數(shù),即可得出答案.【詳解】解:∵該班有40名同學(xué),∴這個班同學(xué)年齡的中位數(shù)是第20和21個數(shù)的平均數(shù).∵14歲的有1人,1歲的有21人,∴這個班同學(xué)年齡的中位數(shù)是1歲.【點睛】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),熟練掌握中位數(shù)的定義是本題的關(guān)鍵.15、一【解析】

根據(jù)一元二次方程的定義和判別式的意義得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根據(jù)一次函數(shù)的性質(zhì)判斷一次函數(shù)y=mx+m的圖象所在的象限即可.【詳解】∵關(guān)于x的一元二次方程mx2-2x-1=0無實數(shù)根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函數(shù)y=mx+m的圖象經(jīng)過第二、三、四象限,不經(jīng)過第一象限.故答案為一.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△<0時,方程無實數(shù)根.也考查了一次函數(shù)的性質(zhì).16、10【解析】

連接OC,當(dāng)CD⊥OA時CD的值最小,然后根據(jù)垂徑定理和勾股定理求解即可.【詳解】連接OC,當(dāng)CD⊥OA時CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=,∴CD=5×2=10.故答案為10.【點睛】本題考查了垂徑定理及勾股定理,垂徑定理是:垂直與弦的直徑平分這條弦,并且平分這條弦所對的兩段弧

.17、35【解析】試題分析:解答此題要利用互余角的三角函數(shù)間的關(guān)系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點:互余兩角三角函數(shù)的關(guān)系.三、解答題(共7小題,滿分69分)18、建筑物AB的高度約為30.3m.【解析】分析:過點D作DE⊥AB,利用解直角三角形的計算解答即可.詳解:如圖,根據(jù)題意,BC=2,∠DCB=90°,∠ABC=90°.過點D作DE⊥AB,垂足為E,則∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四邊形DCBE為矩形,∴DE=BC=2.在Rt△ADE中,tan∠ADE=,∴AE=DE?tan30°=.在Rt△DEB中,tan∠BDE=,∴BE=DE?tan10°=2×0.18=7.2,∴AB=AE+BE=23.09+7.2=30.29≈30.3.答:建筑物AB的高度約為30.3m.點睛:考查解直角三角形的應(yīng)用﹣仰角俯角問題,要求學(xué)生能借助俯角構(gòu)造直角三角形并解直角三角形.19、(1)證明見解析;(2).【解析】

先利用等腰三角形的性質(zhì)得到,利用切線的性質(zhì)得,則CE∥BD,然后證明得到BE=CE;作于F,如圖,在Rt△OBC中利用正弦定義得到BC=5,所以,然后在Rt△BEF中通過解直角三角形可求出BE的長.【詳解】證明:,,,是的切線,,,.平分,,,;解:作于F,如圖,

的直徑長8,.,,,,在中,設(shè),則,,即,解得,.故答案為(1)證明見解析;(2).【點睛】本題考查切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系簡記作:見切點,連半徑,見垂直也考查了解直角三角形.20、,當(dāng)x=0時,原式=(或:當(dāng)x=-1時,原式=).【解析】

先根據(jù)分式混合運算的法則把原式進(jìn)行化簡,再選取合適的x的值代入進(jìn)行計算即可.【詳解】解:原式=×=.x滿足﹣1≤x≤1且為整數(shù),若使分式有意義,x只能取0,﹣1.當(dāng)x=0時,原式=﹣(或:當(dāng)x=﹣1時,原式=).【點睛】本題考查分式的化簡求值,化簡的過程中要注意運算順序和分式的化簡.化簡的最后結(jié)果分子、分母要進(jìn)行約分,注意運算的結(jié)果要化成最簡分式或整式.21、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣1.當(dāng)x=﹣時,原式=(﹣)2﹣1=3﹣1=﹣2.【解析】應(yīng)用整式的混合運算法則進(jìn)行化簡,最后代入x值求值.22、見解析【解析】試題分析:首先根據(jù)旋轉(zhuǎn)的性質(zhì),找到兩組對應(yīng)點,連接這兩組對應(yīng)點;然后作連接成的兩條線段的垂直平分線,兩垂直平分線的交點即為旋轉(zhuǎn)中心,據(jù)此解答即可.解:如圖所示,點P即為所求作的旋轉(zhuǎn)中心.23、(1)證明見解析(2)【解析】

(1)連接OC,根據(jù)等腰三角形的性質(zhì)、平行線的判定得到OC∥AE,得到OC⊥EF,根據(jù)切線的判定定理證明;(2)根據(jù)勾股定理求出AC,證明△AEC∽△ACB,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.【詳解】(1)證明:連接OC,∵OA=OC,∴∠OCA=∠BAC,∵點C是的中點,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切線;(2)解:∵AB為⊙O的直徑,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴,∴AE=.【點睛】本題考查的是切線的判定、圓周角定理以及相似三角形的判定和性質(zhì),掌握切線的判定定理、直徑所對的圓周角是直角是解題的關(guān)鍵.24、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標(biāo),進(jìn)而求得D的坐標(biāo),即可求得DH的長度,令y=0,求得A,B的坐標(biāo),然后證得△ACO∽△EAH,根據(jù)對應(yīng)邊成比例求得EH的長,進(jìn)繼而求得DE的長;(2)找點C關(guān)于DE的對稱點N(4,),找點C關(guān)于AE的對稱點G(-2,-),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點的坐標(biāo)求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點M作y軸的平行線交FH于點Q,設(shè)點M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進(jìn)而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論