版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
18/18解密函數(shù)零點(diǎn)相關(guān)問題一、方法綜述新課標(biāo)下的高考越來越注重對(duì)學(xué)生的綜合素質(zhì)的考察,函數(shù)的零點(diǎn)問題便是一個(gè)考察學(xué)生綜合素質(zhì)的很好途徑,它主要涉及到基本初等函數(shù)的圖象,滲透著轉(zhuǎn)化、化歸、數(shù)形結(jié)合、函數(shù)與方程等思想方法,在培養(yǎng)思維的靈活性、創(chuàng)造性等方面起到了積極的作用.近幾年的數(shù)學(xué)高考中頻頻出現(xiàn)零點(diǎn)問題,其形式逐漸多樣化,但都與函數(shù)、導(dǎo)數(shù)知識(shí)密不可分.根據(jù)函數(shù)零點(diǎn)的定義:對(duì)于函數(shù)SKIPIF1<0,把使SKIPIF1<0成立的實(shí)數(shù)SKIPIF1<0叫做函數(shù)SKIPIF1<0的零點(diǎn).即:方程SKIPIF1<0有實(shí)數(shù)根SKIPIF1<0函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸有交點(diǎn)的橫坐標(biāo)SKIPIF1<0函數(shù)SKIPIF1<0有零點(diǎn).圍繞三者之間的關(guān)系,在高考數(shù)學(xué)中函數(shù)零點(diǎn)的題型主要①函數(shù)的零點(diǎn)的分布;②函數(shù)的零點(diǎn)的個(gè)數(shù)問題;③利用導(dǎo)數(shù)結(jié)合圖像的變動(dòng)將兩個(gè)函數(shù)的圖像的交點(diǎn)問題轉(zhuǎn)化成函數(shù)的零點(diǎn)的個(gè)數(shù)問題.二、解題策略類型一:函數(shù)零點(diǎn)的分布問題例1.【2020·河南高考模擬】已知單調(diào)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,對(duì)于定義域內(nèi)任意SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)所在的區(qū)間為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】根據(jù)題意,對(duì)任意的SKIPIF1<0,都有SKIPIF1<0,又由SKIPIF1<0是定義在SKIPIF1<0上的單調(diào)函數(shù),則SKIPIF1<0為定值,設(shè)SKIPIF1<0,則SKIPIF1<0,又由SKIPIF1<0,∴SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以零點(diǎn)所在的區(qū)間為(3,4).【解題秘籍】判斷函數(shù)零點(diǎn)所在區(qū)間有三種常用方法:①直接法,解方程判斷;②定理法;③圖象法.【舉一反三】函數(shù)f(x)=lnx+x-eq\f(1,2),則函數(shù)的零點(diǎn)所在區(qū)間是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.(1,2)【答案】C【解析】函數(shù)f(x)=lnx+x-eq\f(1,2)的圖象在(0,+∞)上連續(xù),且SKIPIF1<0=lneq\f(3,4)+eq\f(3,4)-eq\f(1,2)=lneq\f(3,4)+eq\f(1,4)<0,f(1)=ln1+1-eq\f(1,2)=eq\f(1,2)>0,故f(x)的零點(diǎn)所在區(qū)間為SKIPIF1<0.學(xué)科$網(wǎng)類型二函數(shù)零點(diǎn)的個(gè)數(shù)問題例2.【2020·陜西高考模擬】已知函數(shù)SKIPIF1<0,則函數(shù)g(x)=xf(x)﹣1的零點(diǎn)的個(gè)數(shù)為()A.2 B.3 C.4 D.5【答案】B【解析】由g(x)=xf(x)﹣1=0得xf(x)=1,當(dāng)x=0時(shí),方程xf(x)=1不成立,即x≠0,則等價(jià)為f(x)=SKIPIF1<0,當(dāng)2<x≤4時(shí),0<x﹣2≤2,此時(shí)f(x)=SKIPIF1<0f(x﹣2)=SKIPIF1<0(1﹣|x﹣2﹣1|)=SKIPIF1<0﹣SKIPIF1<0|x﹣3|,當(dāng)4<x≤6時(shí),2<x﹣2≤4,此時(shí)f(x)=SKIPIF1<0f(x﹣2)=SKIPIF1<0[SKIPIF1<0﹣SKIPIF1<0|x﹣2﹣3|]=SKIPIF1<0﹣SKIPIF1<0|x﹣5|,作出f(x)的圖象如圖,則f(1)=1,f(3)=SKIPIF1<0f(1)=SKIPIF1<0,f(5)=SKIPIF1<0f(3)=SKIPIF1<0,設(shè)h(x)=SKIPIF1<0,則h(1)=1,h(3)=SKIPIF1<0,h(5)=SKIPIF1<0>f(5),作出h(x)的圖象,由圖象知兩個(gè)函數(shù)圖象有3個(gè)交點(diǎn),即函數(shù)g(x)的零點(diǎn)個(gè)數(shù)為3個(gè),故選:B.【點(diǎn)睛】函數(shù)零點(diǎn)的求解與判斷方法:(1)直接求零點(diǎn):令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn).(2)零點(diǎn)存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個(gè)零點(diǎn).(3)利用圖象交點(diǎn)的個(gè)數(shù):將函數(shù)變形為兩個(gè)函數(shù)的差,畫兩個(gè)函數(shù)的圖象,看其交點(diǎn)的橫坐標(biāo)有幾個(gè)不同的值,就有幾個(gè)不同的零點(diǎn).【舉一反三】【2020·安徽高考模擬】已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【答案】D【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上為減函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上為增函數(shù),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0.又在SKIPIF1<0上,SKIPIF1<0的圖像如圖所示:因?yàn)镾KIPIF1<0有兩個(gè)不同的零點(diǎn),所以方程SKIPIF1<0有兩個(gè)不同的解即直線SKIPIF1<0與SKIPIF1<0有兩個(gè)不同交點(diǎn)且交點(diǎn)的橫坐標(biāo)分別為SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.綜上,選D.類型三已知函數(shù)零點(diǎn)求參數(shù)例3.【2020·天津高考模擬】已知函數(shù)SKIPIF1<0,SKIPIF1<0若關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有三個(gè)不相等的實(shí)數(shù)解,則SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有三個(gè)不相等的實(shí)數(shù)解,即方程SKIPIF1<0恰有三個(gè)不相等的實(shí)數(shù)解,即SKIPIF1<0與SKIPIF1<0有三個(gè)不同的交點(diǎn).令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)單調(diào)遞增;且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,據(jù)此繪制函數(shù)SKIPIF1<0的圖像如圖所示,結(jié)合函數(shù)圖像可知,滿足題意時(shí)SKIPIF1<0的取值范圍是SKIPIF1<0.本題選擇C選項(xiàng).【舉一反三】【2020·江蘇高考模擬】已知函數(shù)SKIPIF1<0有且僅有三個(gè)零點(diǎn),并且這三個(gè)零點(diǎn)構(gòu)成等差數(shù)列,則實(shí)數(shù)a的值為_______.【答案】SKIPIF1<0或SKIPIF1<0【解析】函數(shù)SKIPIF1<00,得|x+a|SKIPIF1<0a=3,設(shè)g(x)=|x+a|SKIPIF1<0a,h(x)=3,則函數(shù)g(x)SKIPIF1<0,不妨設(shè)f(x)=0的3個(gè)根為x1,x2,x3,且x1<x2<x3,當(dāng)x>﹣a時(shí),由f(x)=0,得g(x)=3,即xSKIPIF1<03,得x2﹣3x﹣4=0,得(x+1)(x﹣4)=0,解得x=﹣1,或x=4;若①﹣a≤﹣1,即a≥1,此時(shí)x2=﹣1,x3=4,由等差數(shù)列的性質(zhì)可得x1=﹣6,由f(﹣6)=0,即g(﹣6)=3得6SKIPIF1<02a=3,解得aSKIPIF1<0,滿足f(x)=0在(﹣∞,﹣a]上有一解.若②﹣1<﹣a≤4,即﹣4≤a<1,則f(x)=0在(﹣∞,﹣a]上有兩個(gè)不同的解,不妨設(shè)x1,x2,其中x3=4,所以有x1,x2是﹣xSKIPIF1<02a=3的兩個(gè)解,即x1,x2是x2+(2a+3)x+4=0的兩個(gè)解.得到x1+x2=﹣(2a+3),x1x2=4,又由設(shè)f(x)=0的3個(gè)根為x1,x2,x3成差數(shù)列,且x1<x2<x3,得到2x2=x1+4,解得:a=﹣1SKIPIF1<0(舍去)或a=﹣1SKIPIF1<0.③﹣a>4,即a<﹣4時(shí),f(x)=0最多只有兩個(gè)解,不滿足題意;綜上所述,aSKIPIF1<0或﹣1SKIPIF1<0.三、強(qiáng)化訓(xùn)練1.已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有SKIPIF1<0個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【來源】四川省成都市南開為明學(xué)校2020-2021學(xué)年高三上學(xué)期第二次調(diào)研考試數(shù)學(xué)(理)試題【答案】A【解析】令SKIPIF1<0,則SKIPIF1<0,則函數(shù)SKIPIF1<0有SKIPIF1<0個(gè)零點(diǎn)即直線SKIPIF1<0與函數(shù)SKIPIF1<0有SKIPIF1<0個(gè)交點(diǎn),將直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖像分別沿SKIPIF1<0軸的正方向上移SKIPIF1<0個(gè)單位,即直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖像有SKIPIF1<0個(gè)交點(diǎn),因?yàn)镾KIPIF1<0,滿足SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),因?yàn)橹本€SKIPIF1<0過點(diǎn)SKIPIF1<0,所以只需滿足直線SKIPIF1<0與SKIPIF1<0剛好有除點(diǎn)SKIPIF1<0外的另一個(gè)交點(diǎn)即可,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,如圖,將直線SKIPIF1<0繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),顯然SKIPIF1<0與SKIPIF1<0只有一個(gè)交點(diǎn),故實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,故選:A.2.已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上恒有兩個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【來源】百師聯(lián)盟2020-2021學(xué)年高三上學(xué)期一輪復(fù)習(xí)聯(lián)考(四)全國卷I文科數(shù)學(xué)試題【答案】B【解析】作出SKIPIF1<0和SKIPIF1<0,如圖所示,要使函數(shù)SKIPIF1<0在SKIPIF1<0上恒有兩個(gè)零點(diǎn),即函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個(gè)交點(diǎn),易知當(dāng)SKIPIF1<0時(shí),滿足題意;當(dāng)SKIPIF1<0時(shí),有三個(gè)交點(diǎn),不滿足題意;當(dāng)SKIPIF1<0時(shí),考慮SKIPIF1<0與SKIPIF1<0相切時(shí),設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),有兩個(gè)交點(diǎn),滿足題意;當(dāng)SKIPIF1<0時(shí),有四個(gè)交點(diǎn),不滿足題意;當(dāng)SKIPIF1<0時(shí),無交點(diǎn),不滿足題意綜上,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0或SKIPIF1<0,故選SKIPIF1<0.3.已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0的圖象上分別存在點(diǎn)SKIPIF1<0?SKIPIF1<0,使得SKIPIF1<0?SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【來源】四川省內(nèi)江市高中2020-2021學(xué)年高三上學(xué)期第一次模擬考試數(shù)學(xué)理科試題【答案】C【解析】設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的圖象上的任意一點(diǎn),其關(guān)于SKIPIF1<0對(duì)稱的點(diǎn)的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱的函數(shù)為SKIPIF1<0.由于SKIPIF1<0與SKIPIF1<0的圖象上分別存在點(diǎn)SKIPIF1<0?SKIPIF1<0,使得SKIPIF1<0?SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,故函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0圖象在區(qū)間SKIPIF1<0有交點(diǎn),所以方程SKIPIF1<0在區(qū)間SKIPIF1<0上有解,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:C.4.已知函數(shù)SKIPIF1<0,以下結(jié)論正確的是()A.SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù)B.SKIPIF1<0C.若方程SKIPIF1<0恰有SKIPIF1<0個(gè)實(shí)根,則SKIPIF1<0D.若函數(shù)SKIPIF1<0在SKIPIF1<0上有個(gè)零點(diǎn)SKIPIF1<0,則SKIPIF1<0【來源】四川省師范大學(xué)附屬中學(xué)2020-2021學(xué)年高三上學(xué)期期中數(shù)學(xué)(理)試題【答案】C【解析】由題意,作出函數(shù)SKIPIF1<0的圖象,如圖所示,對(duì)于A中,當(dāng)SKIPIF1<0,若SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為周期為SKIPIF1<0的函數(shù),作出SKIPIF1<0在區(qū)間SKIPIF1<0的函數(shù),可知SKIPIF1<0在區(qū)間SKIPIF1<0上先增后減,所以A錯(cuò)誤;對(duì)于B中,因?yàn)镾KIPIF1<0時(shí),函數(shù)SKIPIF1<0為周期為SKIPIF1<0的函數(shù),又由SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以B錯(cuò)誤;對(duì)于C中,直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0,函數(shù)SKIPIF1<0的圖象和函數(shù)SKIPIF1<0的圖象有三個(gè)交點(diǎn),當(dāng)SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0相切于點(diǎn)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0,根據(jù)對(duì)稱性可知,當(dāng)SKIPIF1<0與SKIPIF1<0相切時(shí),SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,綜上可得,當(dāng)函數(shù)SKIPIF1<0的圖象和函數(shù)SKIPIF1<0的圖象有三個(gè)交點(diǎn)時(shí),SKIPIF1<0,所以C正確.對(duì)于D中,又由函數(shù)SKIPIF1<0在SKIPIF1<0上有個(gè)零點(diǎn)SKIPIF1<0,故直線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上由6個(gè)交點(diǎn),不妨設(shè)SKIPIF1<0,由圖象可知SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,所以SKIPIF1<0,所以D錯(cuò)誤.故選:C.5.SKIPIF1<0為實(shí)數(shù),SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù).SKIPIF1<0,若SKIPIF1<0的圖像上恰好存在一個(gè)點(diǎn)與SKIPIF1<0的圖像上某點(diǎn)關(guān)于SKIPIF1<0軸對(duì)稱,則實(shí)數(shù)SKIPIF1<0的取值范圍為___________.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,由題意可知SKIPIF1<0在SKIPIF1<0有一個(gè)解,故SKIPIF1<0在SKIPIF1<0有一個(gè)解設(shè)SKIPIF1<0,SKIPIF1<0寫成分段函數(shù)形式即為SKIPIF1<0作出函數(shù)圖象可知SKIPIF1<0與SKIPIF1<0,SKIPIF1<0只有一個(gè)交點(diǎn),由圖象可知,SKIPIF1<0的取值范圍為SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<06.已知SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0(SKIPIF1<0為實(shí)數(shù))有兩個(gè)不同的零點(diǎn)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【解析】SKIPIF1<0,求導(dǎo)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.函數(shù)SKIPIF1<0有兩個(gè)不同零點(diǎn),等價(jià)于方程SKIPIF1<0有兩個(gè)不等實(shí)根.設(shè)SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,作出函數(shù)SKIPIF1<0的圖像,則問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上有兩個(gè)不同的實(shí)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,由零點(diǎn)存在性定理知,SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn),故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.7.已知函數(shù)SKIPIF1<0存在SKIPIF1<0個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是__________.【來源】江西宜春市2021屆高三上學(xué)期數(shù)學(xué)(理)期末試題【答案】SKIPIF1<0【解析】令SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0極大值SKIPIF1<0所以,函數(shù)SKIPIF1<0在SKIPIF1<0處取得最大值,即SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,由于SKIPIF1<0,解得SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0極大值SKIPIF1<0所以,函數(shù)SKIPIF1<0在SKIPIF1<0處取得最大值,即SKIPIF1<0,若使得函數(shù)SKIPIF1<0存在SKIPIF1<0個(gè)零點(diǎn),則直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象恰有兩個(gè)交點(diǎn),設(shè)交點(diǎn)的橫坐標(biāo)分別為SKIPIF1<0、SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖如下圖所示:由圖象可知,SKIPIF1<0.作出函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象如下圖所示:由圖象可知,當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象有兩個(gè)交點(diǎn),綜上所述,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.8.已知函數(shù)SKIPIF1<0給出下列四個(gè)結(jié)論:①存在實(shí)數(shù)SKIPIF1<0,使函數(shù)SKIPIF1<0為奇函數(shù);②對(duì)任意實(shí)數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0既無最大值也無最小值;③對(duì)任意實(shí)數(shù)SKIPIF1<0和SKIPIF1<0,函數(shù)SKIPIF1<0總存在零點(diǎn);④對(duì)于任意給定的正實(shí)數(shù)SKIPIF1<0,總存在實(shí)數(shù)SKIPIF1<0,使函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減.其中所有正確結(jié)論的序號(hào)是______________.【來源】中國人民大學(xué)附屬中學(xué)2021屆高三3月開學(xué)檢測(cè)數(shù)學(xué)試題【答案】①②③④【解析】如上圖分別為SKIPIF1<0,SKIPIF1<0和SKIPIF1<0時(shí)函數(shù)SKIPIF1<0的圖象,對(duì)于①:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0圖象如圖SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱,所以存在SKIPIF1<0使得函數(shù)SKIPIF1<0為奇函數(shù),故①正確;對(duì)于②:由三個(gè)圖知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版冰淇淋線下體驗(yàn)店代理經(jīng)營合同2篇
- 二零二五版醫(yī)療機(jī)構(gòu)環(huán)境消毒與保潔服務(wù)合同4篇
- 二零二五年機(jī)房建設(shè)與運(yùn)維保障合同3篇
- 2025年度人工智能教育平臺(tái)合作開發(fā)合同范本4篇
- 二零二五年度智慧家居安裝承包合同模板2篇
- 二零二五年度漫畫改編舞臺(tái)劇合作開發(fā)合同協(xié)議4篇
- 二零二五年度集裝箱堆場(chǎng)場(chǎng)地租賃合同4篇
- 2025年度城市綠道綠植養(yǎng)護(hù)與管理服務(wù)合同4篇
- 二零二五年度智慧城市避雷系統(tǒng)設(shè)計(jì)與實(shí)施合同2篇
- 全新幼兒園場(chǎng)地租賃合同20255篇
- 2024年四川省德陽市中考道德與法治試卷(含答案逐題解析)
- 施工現(xiàn)場(chǎng)水電費(fèi)協(xié)議
- SH/T 3046-2024 石油化工立式圓筒形鋼制焊接儲(chǔ)罐設(shè)計(jì)規(guī)范(正式版)
- 六年級(jí)數(shù)學(xué)質(zhì)量分析及改進(jìn)措施
- 一年級(jí)下冊(cè)數(shù)學(xué)口算題卡打印
- 真人cs基于信號(hào)發(fā)射的激光武器設(shè)計(jì)
- 【閱讀提升】部編版語文五年級(jí)下冊(cè)第三單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
- 四年級(jí)上冊(cè)遞等式計(jì)算練習(xí)200題及答案
- 法院后勤部門述職報(bào)告
- 2024年國信證券招聘筆試參考題庫附帶答案詳解
- 道醫(yī)館可行性報(bào)告
評(píng)論
0/150
提交評(píng)論