版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號有()A.①② B.①④ C.②③ D.①②④2.已知函數(shù)與的圖象有一個橫坐標(biāo)為的交點(diǎn),若函數(shù)的圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個零點(diǎn),則的取值范圍是()A. B.C. D.3.在直角中,,,,若,則()A. B. C. D.4.已知點(diǎn)為雙曲線的右焦點(diǎn),直線與雙曲線交于A,B兩點(diǎn),若,則的面積為()A. B. C. D.5.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知函數(shù)在上有兩個零點(diǎn),則的取值范圍是()A. B. C. D.7.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切9.已知函數(shù)且的圖象恒過定點(diǎn),則函數(shù)圖象以點(diǎn)為對稱中心的充要條件是()A. B.C. D.10.已知函數(shù),若對于任意的,函數(shù)在內(nèi)都有兩個不同的零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.11.若直線的傾斜角為,則的值為()A. B. C. D.12.若,,,點(diǎn)C在AB上,且,設(shè),則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個算法流程圖,則輸出的S的值是______.14.已知,則=___________,_____________________________15.在中,,,則_________.16.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對任意都有成立,則的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為增強(qiáng)學(xué)生的法治觀念,營造“學(xué)憲法、知憲法、守憲法”的良好校園氛圍,某學(xué)校開展了“憲法小衛(wèi)士”活動,并組織全校學(xué)生進(jìn)行法律知識競賽.現(xiàn)從全校學(xué)生中隨機(jī)抽取50名學(xué)生,統(tǒng)計(jì)他們的競賽成績,已知這50名學(xué)生的競賽成績均在[50,100]內(nèi),并得到如下的頻數(shù)分布表:分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)[90,100]人數(shù)51515123(1)將競賽成績在內(nèi)定義為“合格”,競賽成績在內(nèi)定義為“不合格”.請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“法律知識競賽成績是否合格”與“是否是高一新生”有關(guān)?合格不合格合計(jì)高一新生12非高一新生6合計(jì)(2)在(1)的前提下,按“競賽成績合格與否”進(jìn)行分層抽樣,從這50名學(xué)生中抽取5名學(xué)生,再從這5名學(xué)生中隨機(jī)抽取2名學(xué)生,求這2名學(xué)生競賽成績都合格的概率.參考公式及數(shù)據(jù):,其中.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;(Ⅱ)已知直線與曲線交于,兩點(diǎn),與軸交于點(diǎn),求.19.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.20.(12分)如圖,在中,,,點(diǎn)在線段上.(1)若,求的長;(2)若,,求的面積.21.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線與平面所成角的正弦值.22.(10分)已知函數(shù).(1)解關(guān)于的不等式;(2)若函數(shù)的圖象恒在直線的上方,求實(shí)數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.2.A【解析】
根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個橫坐標(biāo)為的交點(diǎn),則,,,,,若函數(shù)圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋?,則,所以當(dāng)時,,在有且僅有5個零點(diǎn),,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)圖象的性質(zhì)、三角函數(shù)的平移伸縮以及零點(diǎn)個數(shù)問題,考查轉(zhuǎn)化思想和計(jì)算能力.3.C【解析】
在直角三角形ABC中,求得,再由向量的加減運(yùn)算,運(yùn)用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計(jì)算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.【點(diǎn)睛】本題考查向量的加減運(yùn)算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運(yùn)算能力,屬于中檔題.4.D【解析】
設(shè)雙曲線C的左焦點(diǎn)為,連接,由對稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點(diǎn)為,連接,由對稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點(diǎn)睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.5.C【解析】
化簡復(fù)數(shù)為、的形式,可以確定對應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對應(yīng)關(guān)系,屬于基礎(chǔ)題.6.C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時,,在上單調(diào)遞增,不合題意.當(dāng)時,,在上單調(diào)遞減,也不合題意.當(dāng)時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.7.A【解析】
利用兩條直線互相平行的條件進(jìn)行判定【詳解】當(dāng)時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點(diǎn)睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.8.D【解析】
由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.9.A【解析】
由題可得出的坐標(biāo)為,再利用點(diǎn)對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.【點(diǎn)睛】本題考查指數(shù)函數(shù)過定點(diǎn)問題和函數(shù)對稱性的應(yīng)用,屬于基礎(chǔ)題.10.D【解析】
將原題等價(jià)轉(zhuǎn)化為方程在內(nèi)都有兩個不同的根,先求導(dǎo),可判斷時,,是增函數(shù);當(dāng)時,,是減函數(shù).因此,再令,求導(dǎo)得,結(jié)合韋達(dá)定理可知,要滿足題意,只能是存在零點(diǎn),使得在有解,通過導(dǎo)數(shù)可判斷當(dāng)時,在上是增函數(shù);當(dāng)時,在上是減函數(shù);則應(yīng)滿足,再結(jié)合,構(gòu)造函數(shù),求導(dǎo)即可求解;【詳解】函數(shù)在內(nèi)都有兩個不同的零點(diǎn),等價(jià)于方程在內(nèi)都有兩個不同的根.,所以當(dāng)時,,是增函數(shù);當(dāng)時,,是減函數(shù).因此.設(shè),,若在無解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個解.設(shè)其解為,當(dāng)時,在上是增函數(shù);當(dāng)時,在上是減函數(shù).因?yàn)?,方程在?nèi)有兩個不同的根,所以,且.由,即,解得.由,即,所以.因?yàn)?,所以,代入,?設(shè),,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)個數(shù)求解參數(shù)取值范圍問題,構(gòu)造函數(shù)法,導(dǎo)數(shù)法研究函數(shù)增減性與最值關(guān)系,轉(zhuǎn)化與化歸能力,屬于難題11.B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計(jì)算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點(diǎn)睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.12.B【解析】
利用向量的數(shù)量積運(yùn)算即可算出.【詳解】解:,,又在上,故選:【點(diǎn)睛】本題主要考查了向量的基本運(yùn)算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識的綜合應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)流程圖,運(yùn)行程序即得.【詳解】第一次運(yùn)行,;第二次運(yùn)行,;第三次運(yùn)行,;第四次運(yùn)行;所以輸出的S的值是.故答案為:【點(diǎn)睛】本題考查算法流程圖,是基礎(chǔ)題.14.?196?3【解析】
由二項(xiàng)式定理及二項(xiàng)式展開式通項(xiàng)得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項(xiàng)式(1?2x)7展開式的通項(xiàng)得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點(diǎn)睛】本題考查二項(xiàng)式定理及其通項(xiàng),屬于中等題.15.【解析】
先由題意得:,再利用向量數(shù)量積的幾何意義得,可得結(jié)果.【詳解】由知:,則在方向的投影為,由向量數(shù)量積的幾何意義得:,∴故答案為【點(diǎn)睛】本題考查了投影的應(yīng)用,考查了數(shù)量積的幾何意義及向量的模的運(yùn)算,屬于基礎(chǔ)題.16.【解析】
由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個量,計(jì)算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時,取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計(jì)算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計(jì)算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】
(1)補(bǔ)充完整的列聯(lián)表如下:合格不合格合計(jì)高一新生121426非高一新生18624合計(jì)302050則的觀測值,所以有的把握認(rèn)為“法律知識競賽成績是否合格”與“是否是高一新生”有關(guān).(2)抽取的5名學(xué)生中競賽成績合格的有名學(xué)生,記為,競賽成績不合格的有名學(xué)生,記為,從這5名學(xué)生中隨機(jī)抽取2名學(xué)生的基本事件有:,共10種,這2名學(xué)生競賽成績都合格的基本事件有:,共3種,所以這2名學(xué)生競賽成績都合格的概率為.18.(1)(x-1)2+y2=4,直線l的直角坐標(biāo)方程為x-y-2=0;(2)3.【解析】
(1)消參得到曲線的普通方程,利用極坐標(biāo)和直角坐標(biāo)方程的互化公式求得直線的直角坐標(biāo)方程;(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系、參數(shù)的幾何意義進(jìn)行求解.【詳解】(1)由曲線C的參數(shù)方程(α為參數(shù))(α為參數(shù)),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標(biāo)方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標(biāo)方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數(shù)方程為(t為參數(shù)).設(shè)A,B兩點(diǎn)對應(yīng)的參數(shù)分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數(shù))代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達(dá)定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.19..【解析】試題分析:,所以.試題解析:B.因?yàn)?,所以?0.(1)(2)【解析】
(1)先根據(jù)平方關(guān)系求出,再根據(jù)正弦定理即可求出;(2)分別在和中,根據(jù)正弦定理列出兩個等式,兩式相除,利用題目條件即可求出,再根據(jù)余弦定理求出,即可根據(jù)求出的面積.【詳解】(1)由,得,所以.由正弦定理得,,即,得.(2)由正弦定理,在中,,①在中,,②又,,,由得,由余弦定理得,即,解得,所以的面積.【點(diǎn)睛】本題主要考查正余弦定理在解三角形中的應(yīng)用,以及三角形面積公式的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.21.(1)見證明;(2)【解析】
(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)藥招投標(biāo)質(zhì)量管理體系建設(shè)
- 場地布置燈具租賃合同
- 魚塘養(yǎng)殖企業(yè)風(fēng)險(xiǎn)管理承包合同
- 通訊設(shè)備行業(yè)購銷合同管理規(guī)范
- 四川省旅游局聘用合同管理規(guī)定
- 煙草行業(yè)貨車租賃合同協(xié)議書范本
- 違章行為的持續(xù)改進(jìn)機(jī)制
- 2024年度文化產(chǎn)業(yè)員工雇傭合同書
- 水利工程招投標(biāo)競爭格局
- 2025建筑工程技術(shù)員聘用合同版
- 【9道期末】安徽省宣城市2023-2024學(xué)年九年級上學(xué)期期末道德與法治試題(含解析)
- 2024年醫(yī)藥行業(yè)年終總結(jié).政策篇 易聯(lián)招采2024
- 《工程造價(jià)專業(yè)應(yīng)用型本科畢業(yè)設(shè)計(jì)指導(dǎo)標(biāo)準(zhǔn)》
- 倉庫主管2025年終總結(jié)及2025工作計(jì)劃
- 2024年01月11396藥事管理與法規(guī)(本)期末試題答案
- 《臨床帶教實(shí)施要求》課件
- 2023年內(nèi)蒙古興安盟事業(yè)單位秋專項(xiàng)人才引進(jìn)筆試真題
- 2024年保安員(初級)試題及答案
- 偵查學(xué)期末考試試題及答案
- 蔬菜采購框架合同模板
- 中國類風(fēng)濕關(guān)節(jié)炎診療指南(2024版)解讀
評論
0/150
提交評論