2022-2023學(xué)年黑龍江省綏化市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)_第1頁
2022-2023學(xué)年黑龍江省綏化市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)_第2頁
2022-2023學(xué)年黑龍江省綏化市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)_第3頁
2022-2023學(xué)年黑龍江省綏化市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)_第4頁
2022-2023學(xué)年黑龍江省綏化市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年黑龍江省綏化市普通高校對(duì)口單招數(shù)學(xué)自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(22題)1.tan960°的值是()A.

B.

C.

D.

2.設(shè)a,b為實(shí)數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

3.已知橢圓x2/25+y2/m2=1(m<0)的右焦點(diǎn)為F1(4,0),則m=()A.-4B.-9C.-3D.-5

4.在等差數(shù)列{an}中,如果a3+a4+a5+a6+a7+a8=30,則數(shù)列的前10項(xiàng)的和S10為()A.30B.40C.50D.60

5.設(shè)集合={1,2,3,4,5,6,},M={1,3,5},則CUM=()A.{2,4,6}B.{1.3,5}C.{1,2,4}D.U

6.A.B.C.

7.兩個(gè)平面之間的距離是12cm,—條直線與他們相交成的60°角,則這條直線夾在兩個(gè)平面之間的線段長為()A.cm

B.24cm

C.cm

D.cm

8.設(shè)集合A={x|1≤x≤5},Z為整數(shù)集,則集合A∩Z中元素的個(gè)數(shù)是()A.6B.5C.4D.3

9.已知a=(4,-4),點(diǎn)A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB

10.A.5B.6C.8D.10

11.設(shè)是l,m兩條不同直線,α,β是兩個(gè)不同平面,則下列命題中正確的是()A.若l//α,α∩β=m,則l//m

B.若l//α,m⊥l,則m⊥α

C.若l//α,m//α,則l//m

D.若l⊥α,l///β則a⊥β

12.展開式中的常數(shù)項(xiàng)是()A.-20B.-15C.20D.15

13.函數(shù)A.1B.2C.3D.4

14.若集合M={3,1,a-1},N={-2,a2},N為M的真子集,則a的值是()A.-1

B.1

C.0

D.

15.已知x與y之間的一組數(shù)據(jù):則y與x的線性回歸方程為y=bx+a必過點(diǎn)()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,4)

16.5人站成一排,甲、乙兩人必須站兩端的排法種數(shù)是()A.6B.12C.24D.120

17.設(shè)i是虛數(shù)單位,若z/i=(i-3)/(1+i)則復(fù)數(shù)z的虛部為()A.-2B.2C.-1D.1

18.直線ax+by+b-a=0與圓x2+y2-x-2=0的位置關(guān)系是()A.相離B.相交C.相切D.無關(guān)

19.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},則(CUA)∩(CUB)=()A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}

20.設(shè)則f(f(-2))=()A.-1B.1/4C.1/2D.3/2

21.袋中裝有4個(gè)大小形狀相同的球,其中黑球2個(gè),白球2個(gè),從袋中隨機(jī)抽取2個(gè)球,至少有一個(gè)白球的概率為()A.

B.

C.

D.

22.直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,則b的值是()A.-2或12B.2或-12C.-2或-12D.2或12

二、填空題(10題)23.

24.若l與直線2x-3y+12=0的夾角45°,則l的斜線率為_____.

25.

26.函數(shù)的最小正周期T=_____.

27.已知函數(shù)f(x)=ax3的圖象過點(diǎn)(-1,4),則a=_______.

28.函數(shù)f(x)=sin2x-cos2x的最小正周期是_____.

29.

30.

31.的值是

。

32.則a·b夾角為_____.

三、計(jì)算題(10題)33.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.

34.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).

35.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

36.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

37.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。

38.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

39.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

40.有語文書3本,數(shù)學(xué)書4本,英語書5本,書都各不相同,要把這些書隨機(jī)排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

41.在等差數(shù)列{an}中,前n項(xiàng)和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.

42.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.

四、簡(jiǎn)答題(10題)43.已知是等差數(shù)列的前n項(xiàng)和,若,.求公差d.

44.以點(diǎn)(0,3)為頂點(diǎn),以y軸為對(duì)稱軸的拋物線的準(zhǔn)線與雙曲線3x2-y2+12=0的一條準(zhǔn)線重合,求拋物線的方程。

45.求k為何值時(shí),二次函數(shù)的圖像與x軸(1)有2個(gè)不同的交點(diǎn)(2)只有1個(gè)交點(diǎn)(3)沒有交點(diǎn)

46.已知a是第二象限內(nèi)的角,簡(jiǎn)化

47.在1,2,3三個(gè)數(shù)字組成無重復(fù)數(shù)字的所有三位數(shù)中,隨機(jī)抽取一個(gè)數(shù),求:(1)此三位數(shù)是偶數(shù)的概率;(2)此三位數(shù)中奇數(shù)相鄰的概率.

48.如圖四面體ABCD中,AB丄平面BCD,BD丄CD.求證:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

49.證明上是增函數(shù)

50.如圖:在長方體從中,E,F(xiàn)分別為和AB和中點(diǎn)。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。

51.已知橢圓和直線,求當(dāng)m取何值時(shí),橢圓與直線分別相交、相切、相離。

52.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為橢圓的左焦點(diǎn),過點(diǎn)M(-1,-1)引拋物線的弦使M為弦的中點(diǎn),求弦長

五、解答題(10題)53.

54.

55.已知函數(shù)f(x)=log21+x/1-x.(1)求f(x)的定義域;(2)討論f(x)的奇偶性;(3)用定義討論f(x)的單調(diào)性.

56.已知a為實(shí)數(shù),函數(shù)f(x)=(x2+l)(x+a).若f(-1)=0,求函數(shù):y=f(x)在[-3/2,1]上的最大值和最小值。

57.已知函數(shù)f(x)=sinx+cosx,x∈R.(1)求函數(shù)f(x)的最小正周期和最大值;(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換得到?

58.

59.如圖,ABCD-A1B1C1D1為長方體.(1)求證:B1D1//平面BC1D;(2)若BC=CC1,,求直線BC1與平面ABCD所成角的大小.

60.某學(xué)校高二年級(jí)一個(gè)學(xué)習(xí)興趣小組進(jìn)行社會(huì)實(shí)踐活動(dòng),決定對(duì)某“著名品牌”A系列進(jìn)行市場(chǎng)銷售量調(diào)研,通過對(duì)該品牌的A系列一個(gè)階段的調(diào)研得知,發(fā)現(xiàn)A系列每日的銷售量f(x)(單位:千克)與銷售價(jià)格x(元/千克)近似滿足關(guān)系式f(x)=a/x-4+10(1-7)2其中4<x<7,a為常數(shù).已知銷售價(jià)格為6元/千克時(shí),每日可售出A系列15千克.(1)求函數(shù)f(x)的解析式;(2)若A系列的成本為4元/千克,試確定銷售價(jià)格x的值,使該商場(chǎng)每日銷售A系列所獲得的利潤最大.

61.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1時(shí)有極值0.(1)求常數(shù)a,b的值;(2)求f(x)的單調(diào)區(qū)間.

62.

六、單選題(0題)63.在等差數(shù)列{an}中,a1=2,a3+a5=10,則a7=()A.5B.8C.10D.14

參考答案

1.Atan960°=tan(900°+60°)=tan(5*180°+60°)=tan60°=

2.D

3.C橢圓的定義.由題意知25-m2=16,解得m2=9,又m<0,所以m=-3.

4.C

5.A補(bǔ)集的運(yùn)算.CuM={2,4,6}.

6.A

7.A

8.B集合的運(yùn)算.∵A={x|1≤x≤5},Z為整數(shù)集,則A∩Z={1,2,3,4,5}.

9.D由,則兩者平行。

10.A

11.D空間中直線與平面的位置關(guān)系,平面與平面的位置關(guān)系.對(duì)于A:l與m可能異面,排除A;對(duì)于B;m與α可能平行或相交,排除B;對(duì)于C:l與m可能相交或異面,排除C

12.D由題意可得,由于展開式的通項(xiàng)公式為,令,求得r=1,故展開式的常數(shù)項(xiàng)為。

13.B

14.A

15.D線性回歸方程的計(jì)算.由于

16.B

17.C復(fù)數(shù)的運(yùn)算及定義.

18.B

19.B集合補(bǔ)集,交集的運(yùn)算.因?yàn)镃uA={2,4,6,7,9},CuB={0,1,3,7,9},所以(CuA)∩(CuB)={7,9}.

20.C函數(shù)的計(jì)算.f(-2)=2-2=1/4>0,則f(f(-2))=f(1/4)=1-=1-1/2=1/2

21.D從中隨即取出2個(gè)球,每個(gè)球被取到的可能性相同,因此所有的取法為,所取出的的2個(gè)球至少有1個(gè)白球,所有的取法為,由古典概型公式可知P=5/6.

22.D圓的切線方程的性質(zhì).圓方程可化為C(x-l)2+(y-1)2=1,∴該圓是以(1,1)為圓心,以1為半徑的圓,∵直線3x+4y=

23.2/5

24.5或,

25.(-∞,-2)∪(4,+∞)

26.

,由題可知,所以周期T=

27.-2函數(shù)值的計(jì)算.由函數(shù)f(x)=ax3-2x過點(diǎn)(-1,4),得4=a(-1)3-2×(-1),解得a=-2.

28.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期為π。

29.2

30.56

31.

,

32.45°,

33.

34.

35.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

36.

37.

38.

39.

40.

41.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

42.

43.根據(jù)等差數(shù)列前n項(xiàng)和公式得解得:d=4

44.由題意可設(shè)所求拋物線的方程為準(zhǔn)線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)

45.∵△(1)當(dāng)△>0時(shí),又兩個(gè)不同交點(diǎn)(2)當(dāng)A=0時(shí),只有一個(gè)交點(diǎn)(3)當(dāng)△<0時(shí),沒有交點(diǎn)

46.

47.1,2,3三個(gè)數(shù)字組成無重復(fù)數(shù)字的所有三位數(shù)共有(1)其中偶數(shù)有,故所求概率為(2)其中奇數(shù)相鄰的三位數(shù)有個(gè)故所求概率為

48.

49.證明:任取且x1<x2∴即∴在是增函數(shù)

50.

51.∵∴當(dāng)△>0時(shí),即,相交當(dāng)△=0時(shí),即,相切當(dāng)△<0時(shí),即,相離

52.

53.

54.

55.(1)要使函數(shù)f(x)=㏒21+x/1-x有意義,則須1+x/1-x>0解得-1<x<1,所以f(x)的定義域?yàn)閧x|-1<x<1}.(2)因?yàn)閒(x)的定義域?yàn)閧x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定義在(-1,1)上的奇函數(shù).(3)設(shè)-1<x1<x2<1,則f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1

56.

57.(1)函數(shù)f(x)=sinx+cosx=sin(x+π/4),∴f(x)的最小正周期是2π,最大值是(2)將y=sinx的圖象向左平行移動(dòng)π/4個(gè)單位,得到sin(x+π/4)的圖象,再將y==sin(x+π/4)的圖象上每-點(diǎn)的縱坐標(biāo)伸長到原來的倍,橫坐標(biāo)不變,所得圖象即為函數(shù)y=f(x)的圖象.

58.

59.(1)ABCD-A1B1C1D1為長方體,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含BC1D,所以B1D1//平面BC1D(2)因?yàn)锳BCD-A1B1C1D1為長方體,CC1⊥平面ABCD,所以BC為BC1在平面ABCD內(nèi)的射影,所以角C1BC為與ABCD夾角,在Rt△C1BC,BC=CC1所以角C1BC=45°,所以直線BC1與平面ABCD所成角的大小為45°.

60.(1)由題意可知,當(dāng)x=6時(shí),f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)設(shè)該商場(chǎng)每日銷售A系列所獲得的利潤為h(x),h(x)=(x-4)[10/x-4+10(x-7)2]=10x3-180x2+1050x-1950(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論