版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ExperimentalInvestigationofBricksUnderUniaxialTensileTestingBSTRACTSofteningisagradualdecreaseofmechanicalresistanceresultingfromacontinuousincreaseofdeformationimposedonamaterialspecimenorstructure.Itisasalientfeatureofquasi-brittlematerialslikeclaybrick,mortar,ceramics,stoneorconcretewhichfailduetoaprocessofprogressiveInternalcrackgrowth.Suchmechanicalbehaviouriscommonlyattributedtotheheterogeneityofthematerial,duetothepresenceofdifferentphasesandmaterialdefects,suchasflawsandvoids.Fortensilefailurethisphenomenonhasbeenwellidentifiedforconcretebutveryfewresultsexistsforclaybrick..Inthepresentpaper,theresultsofanextensivesetoftestscarriedoutatUniversityofMinhoandincludingthreedifferenttypesofbackunderniaxialtensionwillbepresented.Bothtensilestrengthandfractureenergyarequantified,withrecommendationsfortheadoptionofpracticalvalues.INTRODUCTIONThetensilebehaviourofconcreteandotherquasi-brittlematerialsthathaveadisorderedInternalstructure,suchasbrick.canbewelldescribedbythecohesivecrackmodelproposedinitiallybyHILLERBORG[1].Thismodelhasbeenwidelyusedasthefundamentalmodelthatdescribesthenon-linearfracturemechanicsofquasi-brittlematerials,e.g.[2,3].Accordingtothismodelandduetocrackinglocalization,whichisacharacteristicoffractureprocessInquasi-brittlematerials,thetensilebehaviourIscharacterizedbytwoconstitutivelawsassociatedwithdifferentzonesofthematerialduringtheloadingprocess.seeFigure1.Theelastic-plasticstress-strainrelationshipofFigurelaisvaliduntilthepeakloadisreached.ItisnotedthatbeforethepeakInelasticbehaviouroccursduetomicro-crackingandtheenergydissipatedinthisprocessisusuallyneglectedforthecalculationofthefractureenergy.Thestress-crackopeningdisplacementrelationshipofFigurelbdescribesthestrainsofteningbehaviourinthefractureprocesszoneafterthepeak.Thecohesivestress-openingdisplacementdiagramIscharacterizedbythegradualdecreaseofstressfromftmaximumvalue,tozero,correspondingtotheIncreaseofthedistancebetweenthetwoedgesofthecrackfromzerotothecriticalopening,u,ThesofteningdiagramassumesafundamentalroleInthedescriptionofthefractureprocessandIscharacterizedbythetensilestrength,fr,andthefractureenergy,Gr,whichIsgivenbytheareaunderthesofteningdiagram,seeFigure1b.Thecriticalcrackopening,ue,canbereplacedbytheductilityindexd,[4]givenastheratioGrlfr,whichrepresentsthefractureenergynormalizedbythetensilestrength.Thisparameterallowsthecharacterizationofthebrittlenessofthematerialandisdirectlyrelatedtotheshapeofthedescendingportionofthestress-deformationdiagram.Thereareseveralexperimentalmethodsthathavebeenusedtomeasurethefractureproperties(tensilestrength,fractureenergyandductilityIndex)thatallowthedefinitionoftheconstitutivelawsofthematerial,namelydirecttensiletests,indirecttensiletestssuchasthethree-pointloadtest,andtheBraziliansplittingtest.Althoughtensilefailureresultsfromaloadcombinationandamultiplicity,offactors.meaningthatdirecttensionisnottheonlycauseoftensilecracking,adirecttensiletestseemstobethemoslappropriatetesttocharacterizethebasicfailuremechanism(modeI)ofquasi-brittlematerials.ThistestIsdefinedasthereferencemethodtofollow(5jbeingadoptedinthisworkfarthecharacterizationofthetensilebehaviourofbricks.Differentissuesrelatedtothespecimensandthetestprocedureshavebeendiscussedinthepast,namelythetestingequipment,thecontrolmethod,thelocationoftheLinearVariableDisplacementTransducers(LVDTs),thealignmentofthespecimenand,especially,theattachmentofthespecimenstothesteelplatens.TherelevanceofthelatterIsaddressedInFigure2[6].ThebehaviourinFigure2a(rotatingplatensorhinges)Isjustifiedbytherotationofthespecimenduringtheloadingoperation,wherethecrackproceedsfromonesideofthespecimentotheotherside.InthecaseofFigure2busingfixed(non-rotating)platens,abendingmomentisintroducedandmultiplecrackswillappear.Thisresultsinaslightlylargertensilestrengthandahighervalueofenergydissipated(fractureenergy).Finally,ItisnotedthatalthoughthetensilestrengthandfractureenergyareconsideredIntrinsicpropertiesofthematerial,itIswellknownthatfracturepropertiesaresizeandscaledependent[6,7].Tensilefractureparametersofmasonryconstituents,namelyunitsandthemortar-unitinterface,arekeyparametersforadvancednumericalmodellingofmasonryandforadeeperunderstandingofthebehaviourofmasonrystructures.inmepresentpaper,anexperimentalprogrammeusingthreetypesofclaybrickIsdiscussedwiththeobjectiveofincreasingthedataavailableintheliterature.TESTSET-UPANDSPECIMENSTensiletestswereperformedwithsolidbricksproducedbyValedaGandara,Portugal(S),hollowbricksproducedbyJ.MonteiroeFilhos,Portugal(HP),andhollowbricksproducedbySuceram,Spain(HS).Allbricksareextrudedandtheyweretestedinverticalorthickness(V)andinhorizontalorlength(H)directionresultinginsixserieswiththefollowingnotation:SV,SH;HPV,HPH;HSV,HSH.Table1givesthedimensionsofthebricksandthefreewaterabsorption.Thenetcompressivestrengthofthebricks,alongtheextrusiondirectionwas78N/mm282N/mm2and58N/mm2,respectivelyforS.HPandHS.Hereitisnotedthatthesevaluesaremerelyindicative,asthefirsttwovalueswerefromindependenttestsbydifferentresearchersandinsufficientInformationaboutthetestingproceduresisavailable,see(8,9].Thethirdvalueofcompressivestrengthwasprovidedbythemanufacturer.Itisnotedthat:(a)bricksHPareextrudedwiththeholesparalleltothelargerdimensionandbricksHSareextrudedwiththeholesparalleltothesmallerdimension;(b)bricksHPandHShavesmallgroovesintheuppersurface(sideoppositetothefacingside)inordertoincreaseadhesionbetweentheunitandthebackingmortar,seeFlgure3.TestingequipmentandappliedmeasuringdevicesThetestswereperformedinthelaboratoryoftheCivilEngineeringDepartmentofUniversityofMinho,usingaCS7400-Sshearingtestingmachine.Thismachinehastwoindependenthydraulicactuators,positionedinverticalandhorizontaldirections.Ithasaloadcellconnectedtotheverticalactuatorwithamaximumcapacityof25kN,beingparticularlysuitedtosmallspecimens(maximumsizeof90x150x150mm).Theadoptionofaconstantcrosssectionforthespecimensleadstouncertaintyaboutthelocationofthemicro-cracks.Thisrepresentstheusualsupplementarydifficultyforthecontrolmethodofthistypeoftest.SincethecontrolsystemallowsonlyoneLinearVariableDisplacementTransducer(LVDT)asdisplacementcontrol,itwasdecidedtointroduce,bymeansadiamondsawingmachine,twolateralnotcheswithadepthof8mmandathicknessof3mmatmidheightofthespecimeninordertolocalizethefracturesurface.Withthenotches,thestressanddeformationdistributionisnolongeruniform,withstressandstraingradientsoccurringverylocalizednearthenotchtips.Sincethree-dimensionalnpn-uniformcrackopeningcanoccurontensiletests[10],thetensiletestcontrolusingtheaverageofthedeformationsregisteredonthefourcornersofthespecimenisthemostappropriateprocedure,seeFigure4.However,theavailableequipmentcanonlycontrolonedisplacementtransducer(LVDT),locatedatanotchedside.Thetransducershaveameasurebaseof1mmwithalinearityof0.17%ofthefullstroke.Adeformationrateof0.5um/swasusedinthetests.Theforceappliedwasmeasuredonaloadcellof25kNmaximumloadbearingcapacity,withanaccuracyof0.03%.Afterpreparationofthespecimens'ends,glueadhesionconditionswereenhancedbymakingaseriesofsuperficialslotswithasaw.Then,thespecimenswerecarefullyfixedtothesteelplatensusinganepoxyresin(DEVCOM)insuchawaythattheplatenswerekeptperfectlyparallel.Here,ItIsnotedthatthesteelplatensarefixed(non-rotating),meaningthatloadeccentricityIsnotspecimens.Theonlysourceofanissueforpnsmadceccentricityisparallelismbetweenthesteelplatenswhichwethelackof,uldinduceabendingmomentInthespecimenintheclampingoperation.SpecimendimensionsTakingintoconsiderationthebrickdimensionsandthetestset-up,40x40x70mmSbrickspecimenswereextractedasshownInFigure5.HPandHSbricksarehollowand,therefore,thespecimensextractedfromthebricksmustberepresentativeofthebrickshell,achannelorUspecimens,andthebrickweb1specimens,seeFigure6.Here,itisnotedthattheusageofchannelspecimensinquestionablebecausealoadeccentricityisintroducedbythefactthetopandbottomflangesarefullygluedtothesteelspecimens.Nevertheless,becausetheendplatensarefullyfixed,theeccentricityisverylow.alinearelasticFEMcalculationIndicatesthatthenormalizedloadeccentricity(measuredbyeccentricity/webwidth)isonly0.03.RESULTSFromtheforce-elongationrelationshipobtainedinthetensiletests,thefollowingparameterswereevaluated:tensilestrength,fractureenergy,andresidualstressatultimatescanreading.ThenotchesreducetheYoung'smodulusofthebrick(Eb)byabout20%-40%[11].AsthemeasureofEbisquestionable,itisnotshownhere.Figure7illustratestheprocedureadoptedforevaluatingthefractureenergy,G,.Inthecohesivecrackmodeladdressedabove,thecrackopeninguisequaltothetotalelongation,subtractedfromtheelasticdeformation(u,,=vxlmaes/E0)andtheirreversibledeformationu;,,,whichaccountsforinelasticeffectsduringmaterialunloading,inthevicinityofthemacro-crack.Here,/meansisthedistancebetweenthemeasuringpointsoftheLVDT.Themaximumforcerecordedbytheloadcellwasdividedbytheeffectiveareaofeachspecimen(notchedcross-section),inordertodeterminethetensilestrength.Thefractureenergyisidentifiedwiththeworkthatiscarriedouttocompletetheseparationofthetwofacesofthemacro-crack,perunitofarea.Itisnotpossibletodeterminetheexactcrackopeningforwhichthestressvaluetransferredbecomeszero,duetolongtailexhibitedbythesofteningbranchofthestress-openingcrack.Forthecalculationofthefractureenergy,thevalueofthefractureenergyIsusuallycalculatedastheresultofthesumoftwoquantities,onequantitybeingmeasuredandtheotherquantityestimated.ThemeasuredvalueoffractureenergyGf,meansisdirectlycomputedastheareaunderthestress-crackopeningdiagramuptoanominalvalueofthepeakstrength(ortheultimatevalue).TheestimatedvalueGi,&iscalculatedastheareaunderthelinearcurveobtainedbylinear[12]ornon-linear[11]adjustmentoftheoriginaldiagrambelowthecut-off.Here,takingintoaccounttheforce-elongationdiagramsandtheinternalfrictionofthetestingequipment,thefractureenergywassimplyevaluateduptoadeflectionof60pmoruptoadeflectioncorrespondingtoaforceof200N(ifthedeflectionislessthan60pm).Forthetestsabortedbeforetheselimitconditions,theenergydissipatedwasnotevaluated.SspecimensThestress-elongationrelationshipsforspecimensSVFigure8.ForspecimensSV(intheextrusiondirection),theaveragevaluesWere3.48N/mm2(42%)forthetensilestrengthand0.0575N/mm(39%)forthefractureenergy.Theductilityindex,againgivenbytheratioGf/ft,was0.0165mm.ThevaluesinsidebracketsIndicatethevaluesofthecoefficients(CV)forthesixteensuccessfultests.ForspecimensSH(perpendiclartotheextrusiondirection),theaveragevalueswere2.96N/mm(63%)forthetensilestrengthand0.0508N/mm(41%)forthefractureenergy.Thevaluesinsidebracketsindicatethevaluesofthecoefficientsofvariationforthefourteensuccessfultests.Theductilityindexwas0.0172mm..Thetensilestrengthintheextrusiondirectionwas4.5%ofthecompressivestrength.Thetensilestrengthintheextrusiondirectionwas18%higherandthefractureenergyis15%higherthanthevaluesobtainedintheperpendiculardirection,duetothealignmentofthemicrostructure.Theductilitywassimilarinbothdirections.Therefore,bricktypeSexhibitedonlymoderateanisotropy.Alltheresultsexhibitveryalargescatter,thoughthescatterwashigherinthedirectionperpendiculartotheextrusiondirection.Thereasonforthisseemstobeflaws,micro-cracksandinclusionsintheburntclay.Itiswellknownthatthefractureprocessisathree-dimensionalprocess[10]andFigure9aillustratesthetypicalsuperficialcrackingpatternsofbrickspecimens.ItisclearthatbothstraightandpronouncedS-shapedcracksappear,meaningthatalargescattermustbefound.Inallcases,thecrackingsurfacewastortuous,goingaroundtheaggregateandconcentratingintheinterfacesbetweentheaggregateandthematrix.Finally,theresultsofthefractureenergyvs.thetensilestrengthwereplottedinFigure10,whereitcanbeseenthattherewasaweakcorrelationbetweenfractureenergyandtensilestrength,althoughacleartrendforfractureenergytoincreasewithanincreaseoftensilestrengthwasfound.CUNGLUSIONThepresentpaperaimstodiscussthetensilebehaviourofbricksandprovidedataforadvancednumericalsimulations.Forthispurpose,threedifferentproducerswereselectedincludingsolidandhollowbricksfromPortugalandSpain.Directtensiletestsonaservo-controlledmachinewerecarriedoutinordertoobtainthetensilestrength,thefractureenergyandtheshapeofthestress-elongationdiagram.Allbricksweretestedintwoorthogonaldirections,namelyalongandnormaltothedirectionofextrusion.Forthehollowbricks,twodifferenttypesofspecimenwereextractedsothattheshellandthewebcouldbecharacterized.Duetothepresenceofvoidsandinternalfiringcracks,thecompletestress-elongationdiagramcouldnotbeobtainedinseveralofthespecimens.Theresultsindicatealargescatterforthetensilestrengthandfractureenergy.Thefolldwingconclusionswithrespecttothetensilestrengtharepossible:(a)brickspossessanisotropywithhigherstrengthinthedirectionparalleltoextrusion;(b)inhollowbricks,thetensilestrengthoftheshellishigherthanthatoftheweb.Moreover,theaverageresultsinthebrickspecimensarefairlyconstanttakingintoconsiderationthatthreedifferentbrickmanufacturerswereinvolved.Therefore,forpracticalpurposesthefollowingrecommendationsseempossible:(a)thetensilestrengthofbrickisaround5%ofthecompressivestrength(withvaluesfoundaround4N/mm2inthedirectionparalleltoextrusionand3N/mm2inthedirectionperpendiculartoextrusion);(b)theductilityindexisaround0.018mm(meaningthatthefractureenergyfoundisaround0.08and0.06N/mm,respectivelyparallelandperpendiculartotheextrusiondirection).Thevaluesfoundapplysolelyforsolidbricksandmustbereducedforhollowbricks,accordingtothevolumeofholes.ACKNOWLEDGMENTSThepresentworkwaspartiallysupportedbyprojectGROW-1999-70420"Industrialisedsolutionsforconstructionofreinforcedbrickmasonryshellroofs"fundedbyEuropeanCommission.
單軸拉伸試驗(yàn)下磚的實(shí)驗(yàn)研究摘要轉(zhuǎn)化是來(lái)自在一個(gè)材料樣本和結(jié)構(gòu)逐步減少機(jī)械阻力的過(guò)程,這是粘土磚、砂漿、石材等準(zhǔn)脆性材料具體到一個(gè)漸進(jìn)過(guò)程的顯著特點(diǎn)。其破壞的原因是內(nèi)部裂紋的增長(zhǎng)。由于缺陷和空洞的存在,這些特性通常材料的異質(zhì)性。在混凝土中,拉伸破壞現(xiàn)象已得到確定,但是這種破壞很少存在粘土磚中。在目前的論文中,米尼奧大學(xué)進(jìn)行了一系列拉伸試驗(yàn),改試驗(yàn)還包括三個(gè)不同類型磚的單軸拉伸。這三種試驗(yàn)保過(guò)抗拉強(qiáng)度、斷裂能量的量化和實(shí)用價(jià)值采納的建議。引言混凝土和其它準(zhǔn)脆性材料懶神行為有一個(gè)無(wú)序的內(nèi)部結(jié)構(gòu)材料,如磚。改象可以很好地描述最初有希勒勒提出的去裂紋模型,改模型已經(jīng)作為最基本的模型用于解釋準(zhǔn)脆性材料的非線性斷裂。依據(jù)這個(gè)模型,準(zhǔn)脆性材料的一個(gè)特點(diǎn)就是開(kāi)裂的位置不同,這是拉伸材料在不同部位的拉伸特點(diǎn),見(jiàn)圖1。直到達(dá)到高峰負(fù)荷,彈塑性應(yīng)力應(yīng)變關(guān)系圖是有效的。據(jù)悉,非彈性行為的高峰值發(fā)生是由于微裂過(guò)程中消耗的能量通常被忽略。應(yīng)力開(kāi)裂張拉位移關(guān)系圖1b介紹了在斷裂過(guò)程區(qū)的應(yīng)變后峰轉(zhuǎn)化行為。凝聚力應(yīng)力張開(kāi)位移座高峰壓力逐漸減少直到為零,與其相對(duì)應(yīng)的裂紋的兩個(gè)邊之間距離增加從零到關(guān)鍵的開(kāi)裂點(diǎn)。軟化圖在描述假設(shè)的基礎(chǔ)性作用斷裂過(guò)程抗拉強(qiáng)度特點(diǎn)的斷裂能量,即由該地區(qū)給予的軟化圖,簡(jiǎn)圖16.關(guān)鍵性裂紋張拉可以代替延性指數(shù)D;其代表了能源正?;目剐詮?qiáng)度。此參數(shù)允許脆性材料的表征和和降部分的形狀直接關(guān)系到應(yīng)力變形圖。已經(jīng)有幾個(gè)用于測(cè)量斷裂性能的實(shí)驗(yàn)方法對(duì)材料直接拉伸實(shí)驗(yàn)和間接拉伸實(shí)驗(yàn)本構(gòu)關(guān)系,這意味著直接拉伸不是破壞的唯一原因。直接拉伸實(shí)驗(yàn)似乎是最適合的測(cè)試表征準(zhǔn)脆性材料的實(shí)效機(jī)理。這個(gè)測(cè)試定義為可參考的方法。樣本組織和測(cè)試程序已經(jīng)在過(guò)去發(fā)表過(guò),即測(cè)試設(shè)備,控制方法,線性可變位移傳感器的安放位置。后者在圖2中心理問(wèn)題的相關(guān)性,在圖2的案例中,用固定壓板,彎矩和多個(gè)裂縫會(huì)出現(xiàn)。這樣的結(jié)果產(chǎn)生于一個(gè)稍大的抗拉強(qiáng)度和更高的能量值消散。最后,其指出雖然抗拉強(qiáng)度和斷裂在屬性材料內(nèi)考慮,但是,眾所周知,砌體成分?jǐn)嗔岩蕾囉诖笮『鸵?guī)模,即單位砂漿設(shè)備接口一個(gè)實(shí)驗(yàn)程序使用三種類型磚在文獻(xiàn)中體現(xiàn)目標(biāo)數(shù)據(jù)的增加。拉伸斷裂參數(shù)的磚石成分,即單位和砂漿設(shè)備接口,是關(guān)鍵參數(shù)先進(jìn)的磚石結(jié)構(gòu)的數(shù)值模擬并為磚石結(jié)構(gòu)的特性有更深入的了解。我在本論文中,實(shí)驗(yàn)程序使用三種類型的粘土磚討論,文獻(xiàn)提供的目標(biāo)數(shù)據(jù)的增加的。測(cè)試設(shè)置的標(biāo)本由河谷達(dá)拉進(jìn)行的實(shí)心磚的拉伸實(shí)驗(yàn),左右的磚都是擠壓的,他們測(cè)試是直的,厚的,水平的和長(zhǎng)度方向六大系列。表1給出了磚的尺寸和自由水吸收。磚的凈抗壓強(qiáng)度在沿?cái)D出方向分別是78N/mm2,82N/mm2和5882N/mm2。在這里需指出:這些指標(biāo)僅僅是指標(biāo)性的,正如前兩個(gè)值是從相互獨(dú)立的不同研究者和不充足信息的實(shí)驗(yàn)程序得到的,第三個(gè)抗拉強(qiáng)度值是制造商提供的。值得注意的是:HP磚平行較大的尺寸,HP和HS磚在表面上有小槽以增加附著力之間的單位和支持結(jié)構(gòu)。圖1一般的凝聚力模型:(a)彈性應(yīng)力應(yīng)變圖;(b)應(yīng)力裂紋張開(kāi)位移圖圖2邊界條件的影響:(a)針截邊界;(b)夾緊邊界:(c)軟化形狀的影響圖3為測(cè)試選擇的磚:(a)磚瓦;(b)惠普磚;(c)恒生轉(zhuǎn)表1磚標(biāo)本系列:尺寸和吸收檢測(cè)設(shè)備和應(yīng)用測(cè)量設(shè)備在米尼奧大學(xué)土木工程系實(shí)驗(yàn)室進(jìn)行的實(shí)驗(yàn),使用了CS7400-S剪測(cè)試機(jī)器,這個(gè)機(jī)器有兩個(gè)獨(dú)立的液壓執(zhí)行機(jī)構(gòu),垂直位置和水平位置。其
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報(bào)參考:精神生活共同富裕視域下紅色文化旅游深度融合的響應(yīng)機(jī)制與路徑研究
- 課題申報(bào)參考:教育治理現(xiàn)代化背景下現(xiàn)代產(chǎn)業(yè)學(xué)院內(nèi)部治理結(jié)構(gòu)的優(yōu)化研究
- 2025年c語(yǔ)言實(shí)習(xí)心得體會(huì)模版(4篇)
- 2025版房地產(chǎn)尾款支付及產(chǎn)權(quán)過(guò)戶協(xié)議3篇
- 二零二五年車輛抵押維修保養(yǎng)合同3篇
- 二零二五版貿(mào)促會(huì)棉花期貨交易專區(qū)棉花現(xiàn)貨買賣合同3篇
- 二零二五年度企業(yè)法律風(fēng)險(xiǎn)防控培訓(xùn)合同3篇
- 主體架構(gòu)工程分包合同(2024年度)一
- 專屬分店管理承包協(xié)議模板版A版
- 二零二五年度多人合伙經(jīng)營(yíng)酒吧合作協(xié)議范本3篇
- 《健康體檢知識(shí)》課件
- 生產(chǎn)計(jì)劃主管述職報(bào)告
- 名表買賣合同協(xié)議書(shū)
- JTG-T-F20-2015公路路面基層施工技術(shù)細(xì)則
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)附答案
- 中西方校服文化差異研究
- 《子宮肉瘤》課件
- 《準(zhǔn)媽媽衣食住行》課件
- 給男友的道歉信10000字(十二篇)
- 客人在酒店受傷免責(zé)承諾書(shū)范本
- 練字本方格模板
評(píng)論
0/150
提交評(píng)論