




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021年江西省吉安市普通高校對口單招數(shù)學月考卷(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.函數(shù)在(-,3)上單調(diào)遞增,則a的取值范圍是()A.a≥6B.a≤6C.a>6D.-8
2.己知|x-3|<a的解集是{x|-3<x<9},則a=()A.-6B.6C.±6D.0
3.(1-x)4的展開式中,x2的系數(shù)是()A.6B.-6C.4D.-4
4.設a,b為實數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2
D.|a|=|b|
5.現(xiàn)無放回地從1,2,3,4,5,6這6個數(shù)字中任意取兩個,兩個數(shù)均為偶數(shù)的概率是()A.1/5B.1/4C.1/3D.1/2
6.下列立體幾何中關于線面的四個命題正確的有()(1)垂直與同一平面的兩個平面平行(2)若異面直線a,b不垂直,則過a的任何一個平面與b都不垂直(3)垂直與同一平面的兩條直線一定平行(4)垂直于同一直線兩個平面一定平行A.1個B.2個C.3個D.4個
7.設集合M={1,2,4,5,6},集合N={2,4,6},則M∩N=()A.{2,4,5,6}B.{4,5,6}C.{1,2,3,4,5,6}D.{2,4,6}
8.A.1B.2C.3D.4
9.設f(g(π))的值為()A.1B.0C.-1D.π
10.A.(0,4)
B.C.(-2,2)
D.
11.已知平面向量a=(1,3),b(-1,1),則ab=A.(0,4)B.(-1,3)C.0D.2
12.A.B.C.D.
13.A.B.C.D.
14.tan150°的值為()A.
B.
C.
D.
15.函數(shù)y=Asin(wx+α)的部分圖象如圖所示,則()A.y=2sin(2x-π/6)
B.y=2sin(2x-π/3)
C.y=2sin(x+π/6)
D.y=2sin(x+π/3)
16.設集合,則MS等于()A.{x|x>}
B.{x|x≥}
C.{x|x<}
D.{x|x≤}
17.設集合{x|-3<2x-1<3},集合B為函數(shù)y=lg(x-1)的定義域,則A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]
18.設為雙曲線的兩個焦點,點P在雙曲線上,且滿足,則的面積是()A.1
B.
C.2
D.
19.5人站成一排,甲、乙兩人必須站兩端的排法種數(shù)是()A.6B.12C.24D.120
20.過點A(2,1),B(3,2)直線方程為()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0
二、填空題(10題)21.設等差數(shù)列{an}的前n項和為Sn,若S8=32,則a2+2a5十a(chǎn)6=_______.
22.某學校共有師生2400人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為160的樣本,已知從學生中抽取的人數(shù)為150,那么該學校的教師人數(shù)是_______.
23.已知函數(shù)則f(f⑶)=_____.
24.已知向量a=(1,-1),b(2,x).若A×b=1,則x=______.
25.如圖是一個算法流程圖,則輸出S的值是____.
26.若,則_____.
27.若f(x)=2x3+1,則f(1)=
。
28.函數(shù)f(x)=sin(x+φ)-2sinφcosx的最大值為_____.
29.
30.一個口袋中裝有大小相同、質(zhì)地均勻的兩個紅球和兩個白球,從中任意取出兩個,則這兩個球顏色相同的概率是______.
三、計算題(10題)31.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。
32.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
33.設函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
34.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
35.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
36.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
37.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.
38.解不等式4<|1-3x|<7
39.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.
40.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
四、簡答題(10題)41.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長
42.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時,判斷函數(shù)的單調(diào)性并加以證明。
43.已知A,B分別是橢圓的左右兩個焦點,o為坐標的原點,點P(-1,)在橢圓上,線段PB與y軸的焦點M為線段PB的中心點,求橢圓的標準方程
44.某籃球運動員進行投籃測驗,每次投中的概率是0.9,假設每次投籃之間沒有影響(1)求該運動員投籃三次都投中的概率(2)求該運動員投籃三次至少一次投中的概率
45.已知函數(shù):,求x的取值范圍。
46.設函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當x<0時,判斷f(x)的單調(diào)性并加以證明.
47.已知求tan(a-2b)的值
48.數(shù)列的前n項和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項公式(2)a2+a4+a6++a2n的值
49.化簡
50.等比數(shù)列{an}的前n項和Sn,已知S1,S3,S2成等差數(shù)列(1)求數(shù)列{an}的公比q(2)當a1-a3=3時,求Sn
五、解答題(10題)51.
52.已知數(shù)列{an}是的通項公式為an=en(e為自然對數(shù)的底數(shù));(1)證明數(shù)列{an}為等比數(shù)列;(2)若bn=Inan,求數(shù)列{1/bnbn+1}的前n項和Tn.
53.
54.數(shù)列的前n項和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項公式(2)a2+a4+a6++a2n的值
55.組成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個數(shù)
56.等差數(shù)列{an}中,a7=4,a19=2a9.(1)求{an}的通項公式;(2)設bn=1/nan求數(shù)列{bn}的前n項和Sn.
57.已知橢圓的中心為原點,焦點在x軸上,離心率為,且經(jīng)過點M(4,1),直線l:y=x+m交橢圓于異于M的不同兩點A,B直線MA,MB與x軸分別交于點E,F(xiàn).(1)求橢圓的標準方程;(2)求m的取值范圍.
58.
59.
60.如圖,在四棱錐P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F(xiàn)分別是AP,AD的中點.連接BD求證:(1)直線EF//平面PCD;(2)平面BEF丄平面PAD.
六、證明題(2題)61.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.
62.△ABC的三邊分別為a,b,c,為且,求證∠C=
參考答案
1.A
2.B
3.A
4.D
5.A
6.B垂直于同一平面的兩個平面不一定平行;垂直于一平面的直線與該平面內(nèi)的所有直線垂直;垂直于同一平面的兩條直線不一定平行也可能共線;垂直于同一直線的兩個平面平行。
7.D集合的計算∵M={1,2,3,4,5,6},N={2,4,6},∴M∩N={2,4,6}
8.C
9.B值的計算.g(π)=0,f(g(π))=f(0)=0
10.A
11.D
12.D
13.A
14.B三角函數(shù)誘導公式的運用.tan150°=tan(180°-30°)=-tan30°=
15.A三角函數(shù)圖像的性質(zhì).由題圖可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五點作圖法可知2×π/3+α=π/2,所以α=-π/6所以函數(shù)的解析式為y=2sin(2x-π/6)
16.A由于MS表示既屬于集合M又屬于集合的所有元素的集合,因此MS=。
17.D不等式的計算,集合的運算.由題知A=[-1,2],B=(1,+∞),∴A∩B=(1,2]
18.A
19.B
20.B直線的兩點式方程.點代入驗證方程.
21.16.等差數(shù)列的性質(zhì).由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.
22.150.分層抽樣方法.該校教師人數(shù)為2400×(160-150)/160=150(人).
23.2e-3.函數(shù)值的計算.由題意得,f(3)=㏒3(9-6)=1,所以f(f(3))=f⑴=2e-3.
24.1平面向量的線性運算.由題得A×b=1×2+(-1)×x=2-x=1,x=1。
25.25程序框圖的運算.經(jīng)過第一次循環(huán)得到的結(jié)果為S=1,n=3,過第二次循環(huán)得到的結(jié)果為S=4,72=5,經(jīng)過第三次循環(huán)得到的結(jié)果為S=9,n=7,經(jīng)過第四次循環(huán)得到的結(jié)果為s=16,n=9經(jīng)過第五次循環(huán)得到的結(jié)果為s=25,n=11,此時不滿足判斷框中的條件輸出s的值為25.故答案為25.
26.27
27.3f(1)=2+1=3.
28.1.三角函數(shù)最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函數(shù)f(x)==sin(x+φ)-2sinφcosx的最大值為1.
29.-5或3
30.1/3古典概型及概率計算公式.兩個紅球的編號為1,2兩個白球的編號為3,4,任取兩個的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),兩球顏色相同的事件有(1,2)和(3,4),故兩球顏色相同概率為2/6=1/3
31.
32.解:設首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
33.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
34.
35.
36.
37.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
38.
39.
40.
41.
42.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)
43.點M是線段PB的中點又∵OM丄AB,∴PA丄AB則c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此橢圓的標準方程為
44.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999
45.
X>4
46.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)設-1<<<0∵
∴
若時
故當X<-1時為增函數(shù);當-1≤X<0為減函數(shù)
47.
48.
49.sinα
50.
51.
52.
53.
54.
55.
56.
57.(1)設橢圓的方程為x2/a2+y2/b2=1因為e=,所以a2=4b2,又因為橢圓過點M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故橢圓標準方x2/20+y2/5=1(2)將y=m+x:代入x2/20+y2/5=1并整理得5x2+8mx+4m2-20=0令△=(8m2)-20(4m2-20)>0,解得-5<m<5.又由題意可知直線不過M(4,1),所以4+m≠1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北工藝美術職業(yè)學院《地下工程項目管理》2023-2024學年第二學期期末試卷
- 硅湖職業(yè)技術學院《信息系統(tǒng)分析與設計實訓》2023-2024學年第二學期期末試卷
- 2025河南省安全員A證考試題庫附答案
- 2025山西省建筑安全員知識題庫
- 南京理工大學泰州科技學院《機械CAD-CAM》2023-2024學年第二學期期末試卷
- 石家莊城市經(jīng)濟職業(yè)學院《美術鑒賞》2023-2024學年第二學期期末試卷
- 云南現(xiàn)代職業(yè)技術學院《汽車標準與法規(guī)》2023-2024學年第二學期期末試卷
- 電梯保養(yǎng)合同-文書模板
- 2024年中學教學年終工作總結(jié)范本
- 新本月工作計劃
- 涂裝工技能鑒定考試題庫匯總-下(多選、判斷題部分)
- 非遺傳統(tǒng)文化課件
- 橋梁施工常見問題及預防控制要點(PPT,46)
- 中俄文一般貿(mào)易合同范本
- 知情同意書核查要點課件
- 廣東省深圳市2021-2022學年高二下學期期末考試 語文 Word版含解析
- 專項施工方案專家論證意見回復表
- 《醫(yī)古文》教學全套課件580頁
- 水電廠計算機監(jiān)控系統(tǒng)改造技術要求
- 勝利油田壓驅(qū)技術工藝研究進展及下步工作方向
- 依戀理論之母嬰依戀
評論
0/150
提交評論