初中數(shù)學(xué)教案(實(shí)用10篇)_第1頁
初中數(shù)學(xué)教案(實(shí)用10篇)_第2頁
初中數(shù)學(xué)教案(實(shí)用10篇)_第3頁
初中數(shù)學(xué)教案(實(shí)用10篇)_第4頁
初中數(shù)學(xué)教案(實(shí)用10篇)_第5頁
已閱讀5頁,還剩40頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1/1初中數(shù)學(xué)教案(實(shí)用10篇)

初中數(shù)學(xué)教案第1篇一、分層教學(xué)的含義

分層教學(xué)是指教師在學(xué)生知識(shí)基礎(chǔ)、智力因素存在明顯差異的情況下,有區(qū)別地設(shè)計(jì)教學(xué)環(huán)節(jié)進(jìn)行教學(xué),遵循因材施教的原則,有針對(duì)性地實(shí)施對(duì)不同類別學(xué)生的學(xué)習(xí)指導(dǎo),不僅根據(jù)學(xué)生的不同選擇不同的教法、布置作業(yè),還因材施“助”、因材施“改”、因材施“教”,使每個(gè)學(xué)生都能在原有的基礎(chǔ)上得以發(fā)展,從而達(dá)到不同類別的教學(xué)目標(biāo)的一種教學(xué)方法。

分層教學(xué)是“著眼于與學(xué)生的可持續(xù)性的、良性的發(fā)展”的教育觀念下的一種教學(xué)實(shí)施策略。所謂分層教學(xué)(同班、同年級(jí)分層次教學(xué))就是教師在教授同一教學(xué)內(nèi)容時(shí),對(duì)同一個(gè)班內(nèi)不同知識(shí)水平和接受能力的優(yōu)、中、差生以相應(yīng)的三個(gè)層次的教學(xué)深度和廣度進(jìn)行合講分練,做到課堂教學(xué)有的放矢,區(qū)別對(duì)待,使每個(gè)學(xué)生都在自己原來的基礎(chǔ)上學(xué)有所得,思有所進(jìn),在不同程度上有所提高,同步發(fā)展。教師的教學(xué)方法應(yīng)從最低點(diǎn)起步,分類指導(dǎo),逐步推進(jìn),做到“分合”有序,動(dòng)靜結(jié)合,并分層設(shè)計(jì)練習(xí),分層設(shè)計(jì)課堂,分層布置作業(yè),引導(dǎo)學(xué)生全員參與,各得進(jìn)步。

二、分層教學(xué)必要性分析

1、教學(xué)現(xiàn)狀呼喚分層教學(xué)的實(shí)施

義務(wù)教育的實(shí)施使小學(xué)畢業(yè)生全部升入初中學(xué)習(xí),這樣,在同一班里,學(xué)生的知識(shí)、能力參差不齊。但是,應(yīng)試教育留下的種種弊端抑制了各層次的學(xué)生的學(xué)習(xí)積極性和興趣,整齊劃一的教學(xué)要求,忽視了學(xué)生之間的差異。為了使教育面向全體學(xué)生,減輕部分學(xué)生過重的負(fù)擔(dān),使他們?cè)谠械幕A(chǔ)上有所提高,全面提高教學(xué)質(zhì)量,又要使有特長的學(xué)生得到更進(jìn)一步的發(fā)展。因此必須實(shí)施因材施教,根據(jù)不同的學(xué)生的具體情況,確立不同的教學(xué)目標(biāo),采取不同的教學(xué)方法,使其個(gè)性得到充分發(fā)展,為社會(huì)培養(yǎng)各種層次的有用之人。

2、新課程改革呼喚分層教學(xué)的實(shí)施

數(shù)學(xué)課程改革的核心是課程的實(shí)施,而教學(xué)是課程實(shí)施的基本途徑。課程改革歸根到底是要轉(zhuǎn)變教師的傳統(tǒng)教學(xué)觀念:包括教學(xué)方式的轉(zhuǎn)變——從“教”到“引”;知識(shí)技能掌握理念的轉(zhuǎn)變——從“滿堂灌”、“書山題海”到“在親身經(jīng)歷中體會(huì)、理解、掌握知識(shí)技能”,強(qiáng)調(diào)自我的情感體驗(yàn);教材觀的轉(zhuǎn)變——從“教教材”到“用教材”,教材變成我們引導(dǎo)學(xué)生探究知識(shí)的工具之一;評(píng)價(jià)機(jī)制的轉(zhuǎn)變——從“唯分?jǐn)?shù)論”到“適合學(xué)生自身特點(diǎn)的發(fā)展”,這是實(shí)施分層教學(xué)的原動(dòng)力,但也是現(xiàn)今新課程改革的一個(gè)難點(diǎn)。

在新課改中實(shí)施分層教學(xué)法的目的是逐步樹立學(xué)困生學(xué)習(xí)的信心,激發(fā)中等生的學(xué)習(xí)潛力,擴(kuò)大優(yōu)生的學(xué)習(xí)面。為了適應(yīng)當(dāng)前素質(zhì)教育的需要,我們要采用針對(duì)性的矯正和幫助,進(jìn)行分層教學(xué),分類指導(dǎo),及時(shí)反饋,從中探索出一條教學(xué)改革的新路子。

3、學(xué)生個(gè)體差異的客觀存在

心理學(xué)的研究結(jié)果表明:學(xué)生的學(xué)習(xí)能力差異是存在的,特別是學(xué)生在數(shù)學(xué)學(xué)習(xí)能力方面存在著較大的差異這已是一個(gè)不爭的事實(shí)。造成差異的原因有很多,學(xué)生的先天遺傳因素及環(huán)境、教育條件都有所不同,還有社會(huì)因素(即環(huán)境、教育條件、科學(xué)訓(xùn)練),這些原因是對(duì)學(xué)生學(xué)習(xí)能力的形成起著決定性作用,所以學(xué)生所表現(xiàn)出的數(shù)學(xué)能力有明顯差異也是正常的。

學(xué)生作為一個(gè)群體,存在著個(gè)體差異

(1)智力差異。每個(gè)學(xué)生因?yàn)檫z傳基因的不同,智力的差異是不可避免的。有的人聰明;有的人愚鈍,有的人形象思維強(qiáng);有的邏輯思維強(qiáng);有的人記憶力超人,但推理能力較差;有的人記憶力較差,卻推理能力過人。

(2)學(xué)習(xí)基礎(chǔ)差異。不同的學(xué)生在小學(xué)的數(shù)學(xué)狀況不一樣:有的學(xué)生數(shù)學(xué)十分優(yōu)秀,有的學(xué)生數(shù)學(xué)學(xué)習(xí)基本還沒入門,兩極分化相當(dāng)嚴(yán)重。

(3)學(xué)習(xí)品質(zhì)差異。有的學(xué)生學(xué)習(xí)數(shù)學(xué)十分認(rèn)真,有一套自己的數(shù)學(xué)學(xué)習(xí)方法,學(xué)得輕松愉快;而有的學(xué)生因?yàn)闆]有入門,數(shù)學(xué)學(xué)得十分艱難,部分學(xué)生甚至對(duì)數(shù)學(xué)學(xué)習(xí)喪失了信心。

4、分層次教學(xué)符合因材施教的原則

目前我國大部分省市的數(shù)學(xué)教學(xué)采用的是統(tǒng)一教材、統(tǒng)一課時(shí)、統(tǒng)一教參,在學(xué)生學(xué)習(xí)能力存在差異的情況下,在教學(xué)過程中往往容易產(chǎn)全“顧中間、丟兩頭”。如不因材施教,就使部分學(xué)生就成了陪讀、陪考。數(shù)學(xué)能力強(qiáng)的學(xué)生潛能得不到充分發(fā)揮,能力稍差的學(xué)生就可能變成了后進(jìn)生。有研究結(jié)果表明:教師、家庭、社會(huì)、學(xué)生、學(xué)校等方面的因素都有可能是形成后進(jìn)生的原因,其中有50%的原因是來自教師在教學(xué)中的失誤。我們的基礎(chǔ)教育既要注意確保學(xué)生的共性需求,又要顧及學(xué)生的個(gè)性發(fā)展,所以進(jìn)行分層教育確有必要。

5、分層次教學(xué)能夠有效推動(dòng)教學(xué)過程的展開

按照教育家達(dá)尼洛夫關(guān)于教學(xué)過程的動(dòng)力理論之說,認(rèn)為只有學(xué)生學(xué)習(xí)的可能性與對(duì)他們的要求是一致的,才可能推動(dòng)教學(xué)過程的展開,從而加快學(xué)習(xí)成績的提高,而這兩者的統(tǒng)一關(guān)系若被破壞,就會(huì)造成學(xué)業(yè)的不良后果。學(xué)生的學(xué)習(xí)可能是由他們生理和心理的一般發(fā)展水平與對(duì)某項(xiàng)學(xué)習(xí)的具體準(zhǔn)備狀態(tài)所決定的,學(xué)生學(xué)習(xí)可能性的構(gòu)成因素中既有相對(duì)穩(wěn)定的因素,又有易變的因素。相對(duì)穩(wěn)定的因素,決定了學(xué)生在一段時(shí)間內(nèi)可能達(dá)到的學(xué)習(xí)水平的范圍,決定了學(xué)業(yè)不良學(xué)生要取得學(xué)業(yè)進(jìn)步只能是一個(gè)漸進(jìn)的過程;易變的因素,使學(xué)生能在:一定的主客觀條件下提高或降低自己的實(shí)際可能性水平,從而促進(jìn)或阻礙學(xué)習(xí)可能性與教學(xué)要求之間矛盾的轉(zhuǎn)化,加快學(xué)習(xí)成績提高或降低的速度。由此可見,分層次教學(xué)是著眼于協(xié)調(diào)教學(xué)要求與學(xué)生學(xué)習(xí)可能性的關(guān)系的一種極好的手段,使它們之間能相適應(yīng),從而推動(dòng)教學(xué)過程的展開。

三、分層教學(xué)研究的目的意義

捷克教育家夸美紐斯在十七世紀(jì)提出來的班級(jí)授課制以其大大提高教學(xué)效率、加強(qiáng)學(xué)校工作的計(jì)劃性和實(shí)際社會(huì)效益風(fēng)行了三百多年后,其固有的不利于學(xué)生創(chuàng)造能力的培養(yǎng)和因材施教等種種弊端與社會(huì)發(fā)展對(duì)教育的要求的矛盾越來越尖銳起來。隨著科學(xué)技術(shù)的發(fā)展,社會(huì)日益進(jìn)步,教育資源和教育需求的增長和變化,班級(jí)授課制在我國做出輝煌的貢獻(xiàn)后逐步顯現(xiàn)出其先天的嚴(yán)重不足。教師在班級(jí)授課制下對(duì)能力強(qiáng)的學(xué)生“吃不飽”,能力欠佳的學(xué)生“吃不消”普遍感到力不從心。分層教學(xué)在這種情況下應(yīng)運(yùn)而生,成為優(yōu)化單一班級(jí)授課制的有利途徑。

1.有利于所有學(xué)生的提高:分層教學(xué)法的實(shí)施,避免了部分學(xué)生在課堂上完成作業(yè)后無所事事,同時(shí),所有學(xué)生都體驗(yàn)到學(xué)有所成,增強(qiáng)了學(xué)習(xí)信心。

2.有利于課堂效率的提高:首先,教師事先針對(duì)各層學(xué)生設(shè)計(jì)了不同的教學(xué)目標(biāo)與練習(xí),使得處于不同層的學(xué)生都能“摘到桃子”,獲得成功的喜悅,這極大地優(yōu)化了教師與學(xué)生的關(guān)系,從而提高師生合作、交流的效率;其次,教師在備課時(shí)事先估計(jì)了在各層中可能出現(xiàn)的問題,并做了充分的準(zhǔn)備,使得實(shí)際施教更有的放矢、目標(biāo)明確、針對(duì)性強(qiáng),增大了課堂教學(xué)的容量??傊?,通過這一教學(xué)法,有利于提高課堂教學(xué)的質(zhì)量和效率。

3.有利于教師全面能力的提升:通過有效地組織好對(duì)各層學(xué)生的教學(xué),靈活地安排不同的層次策略,極大地鍛煉了教師的組織調(diào)控與隨機(jī)應(yīng)變能力。分層教學(xué)本身引出的思考和學(xué)生在分層教學(xué)中提出來的挑戰(zhàn)都有利于教師能力的全面提升。

四、分層教學(xué)的理論基礎(chǔ)

1、掌握學(xué)習(xí)理論

布魯姆提出的“掌握學(xué)習(xí)理論”主張:“給學(xué)生足夠的學(xué)習(xí)時(shí)間,同時(shí)使他們獲得科學(xué)的學(xué)習(xí)方法,通過他們自己的努力,應(yīng)該都可以掌握學(xué)習(xí)內(nèi)容”?!安煌瑢W(xué)生需要用不同的方法去教,不同學(xué)生對(duì)不同的教學(xué)內(nèi)容能持久地集中注意力”。為了實(shí)現(xiàn)這個(gè)目標(biāo),就應(yīng)該采取分層教學(xué)的方法。

2、教學(xué)最優(yōu)化理論

巴班斯基的“教學(xué)最優(yōu)化理論”的核心是:教學(xué)過程的最優(yōu)化是選擇一種能使教師和學(xué)生在花費(fèi)最少的必要時(shí)間和精力的情況下獲得最好的教學(xué)效果的教學(xué)方案并加以實(shí)施。分層教學(xué)是實(shí)現(xiàn)這一目標(biāo)的有效方式之一。

3、新課標(biāo)的基本理念

《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出了一種全新的數(shù)學(xué)課程理念:“人人學(xué)有價(jià)值的數(shù)學(xué);人人都能獲得必需的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展”。面向全體學(xué)生,體現(xiàn)了義務(wù)教育的基礎(chǔ)性、普及性和發(fā)展性。不僅為數(shù)學(xué)教學(xué)內(nèi)容的設(shè)定指出方向,而且考慮到學(xué)生的可持續(xù)發(fā)展對(duì)數(shù)學(xué)的需求,并為學(xué)生學(xué)習(xí)數(shù)學(xué)可能產(chǎn)生的差異性留有充分的余地。

五、分層教學(xué)實(shí)施的指導(dǎo)思想及原則

首先,分層次教學(xué)的主體是班級(jí)教學(xué)為主,按層次教學(xué)為輔,層次分得好壞直接影響到“分層次教學(xué)”的成功與否。其指導(dǎo)思想是變傳統(tǒng)的應(yīng)試教育為素質(zhì)教育,是成績差異的分層,而不是人格的分層。為了不給差生增加心理負(fù)擔(dān),必須做好分層前的思想工作,了解學(xué)生的心理特點(diǎn),講情道理:學(xué)習(xí)成績的差異是客觀存在的,分層次教學(xué)的目的不是人為地制造等級(jí),而是采用不同的方法幫助他們提高學(xué)習(xí)成績,讓不同成績的學(xué)生最大限度地發(fā)揮他們的潛力,以逐步縮小差距,達(dá)到班級(jí)整體優(yōu)化。

在對(duì)學(xué)生進(jìn)行分層要堅(jiān)持尊重學(xué)生,師生磋商,動(dòng)態(tài)分層的原則。應(yīng)該向?qū)W生宣布分層方案的設(shè)計(jì),講清分層的目的和意義,以統(tǒng)一師生認(rèn)識(shí);指導(dǎo)每位學(xué)生實(shí)事求是地估計(jì)自己,通過學(xué)生自我評(píng)估,完全由學(xué)生自己自愿選擇適應(yīng)自己的層次;最后,教師根據(jù)學(xué)生自愿選擇的情況進(jìn)行合理性分析,若有必要,在征得學(xué)生同意的基礎(chǔ)上作個(gè)別調(diào)整之后,公布分層結(jié)果。這樣使部分學(xué)生既分到了合適的層次上,又保留了“臉面”,自尊心也不至于受到傷害,也提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

其次,在分層教學(xué)中應(yīng)注意下列原則的使用:

①水平相近原則:在分層時(shí)應(yīng)將學(xué)習(xí)狀況相近的學(xué)生歸為“同一層”;

②差別模糊原則:分層是動(dòng)態(tài)的、可變的,有進(jìn)步的可以“升級(jí)”,退步的應(yīng)“轉(zhuǎn)級(jí)”,且分層結(jié)果不予公布;

③感受成功原則:在制定各層次教學(xué)目標(biāo)、方法、練習(xí)、作業(yè)時(shí),應(yīng)使學(xué)生跳一跳,才可摘到蘋果為宜,在分層中感受到成功的喜悅;

④零整分合原則:教學(xué)內(nèi)容的合與分,對(duì)學(xué)生的“放”與“扶”,以及課外的分層輔導(dǎo)都應(yīng)遵守這個(gè)原則;

⑤調(diào)節(jié)控制原則:由于各層次學(xué)生要求不一,因此在課堂上以學(xué)、議為主,教師要善于激趣、指導(dǎo)、精講、引思,調(diào)節(jié)并控制止好各層次學(xué)生的學(xué)習(xí),做好分類指導(dǎo);

⑥積極激勵(lì)原則:對(duì)各層次學(xué)生的評(píng)價(jià),以縱向性為主。教師通過觀察、反饋信息,及時(shí)表揚(yáng)激勵(lì),對(duì)進(jìn)步大的學(xué)生及時(shí)調(diào)到高一層次,相對(duì)落后的同意轉(zhuǎn)層。從而促進(jìn)各層學(xué)生學(xué)習(xí)的積極性,使所有學(xué)生隨時(shí)都處于最佳的學(xué)習(xí)狀態(tài)。

初中數(shù)學(xué)教案第2篇教學(xué)目標(biāo):

1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。

2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡單的推理的意識(shí)及能力。

重點(diǎn)難點(diǎn):

重點(diǎn):了解勾股定理的由來,并能用它來解決一些簡單的問題。

難點(diǎn):勾股定理的發(fā)現(xiàn)

教學(xué)過程

一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題

出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。

出示投影2(書中的P2圖1—2)并回答:

1、觀察圖1-2,正方形A中有_______個(gè)小方格,即A的面積為______個(gè)單位。

正方形B中有_______個(gè)小方格,即A的面積為______個(gè)單位。

正方形C中有_______個(gè)小方格,即A的面積為______個(gè)單位。

2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:

3、圖1—2中,A,B,C之間的面積之間有什么關(guān)系?學(xué)生交流后形成共識(shí),教師板書,A+B=C,接著提出圖1—1中的A.B,C的關(guān)系呢?

二、做一做

出示投影3(書中P3圖1—4)提問:

1、圖1—3中,A,B,C之間有什么關(guān)系?

2、圖1—4中,A,B,C之間有什么關(guān)系?

3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

學(xué)生討論、交流形成共識(shí)后,教師總結(jié):以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

三、議一議

1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?

在同學(xué)的交流基礎(chǔ)上,老師板書:

直角三角形邊的`兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

那么我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

3、分別以5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請(qǐng)大家想一想(2)中的規(guī)律,對(duì)這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)

四、想一想

這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

五、鞏固練習(xí)

1、錯(cuò)例辨析:△ABC的兩邊為3和4,求第三邊

解:由于三角形的兩邊為3、4所以它的第三邊的c應(yīng)滿足=25即:c=5

辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

綜上所述這個(gè)題目條件不足,第三邊無法求得。

2、練習(xí)P7§1.11

六、作業(yè)

課本P7§1.12、3、4

初中數(shù)學(xué)教案第3篇[教學(xué)目標(biāo)]

1、體會(huì)并了解反比例函數(shù)的圖象的意義

2、能列表、描點(diǎn)、連線法畫出反比例函數(shù)的圖象

3、通過反比例函數(shù)的圖象的分析,探索并掌握反比例函數(shù)的圖象的性質(zhì)

[教學(xué)重點(diǎn)和難點(diǎn)]

本節(jié)教學(xué)的重點(diǎn)是反比例函數(shù)的圖象及圖象的性質(zhì)

由于反比例函數(shù)的圖象分兩支,給畫圖帶來了復(fù)雜性是本節(jié)教學(xué)的難點(diǎn)

[教學(xué)過程]

1、情境創(chuàng)設(shè)

可以從復(fù)習(xí)一次函數(shù)的圖象開始:你還記得一次函數(shù)的圖象嗎?在回憶與交流中,進(jìn)一步認(rèn)識(shí)函數(shù)圖象的直觀有助于理解函數(shù)的性質(zhì)。轉(zhuǎn)而導(dǎo)人關(guān)注新的函數(shù)——反比例函數(shù)的圖象研究:反比例函數(shù)的圖象又會(huì)是什么樣子呢?

2、探索活動(dòng)

探索活動(dòng)1反比例函數(shù)y?

由于反比例函數(shù)y?

要分幾個(gè)層次來探求:

(1)可以先估計(jì)——例如:位置(圖象所在象限、圖象與坐標(biāo)軸的交點(diǎn)等)、趨勢(shì)(上升、下降等);

(2)方法與步驟——利用描點(diǎn)作圖;

列表:取自變量x的哪些值?——x是不為零的任何實(shí)數(shù),所以不能取x的值的為零,但仍可以以零為基準(zhǔn),左右均勻,對(duì)稱地取值。

描點(diǎn):依據(jù)什么(數(shù)據(jù)、方法)找點(diǎn)?

連線:怎樣連線?——可在各個(gè)象限內(nèi)按照自變量從小到大的順序用兩條光滑的曲線把所描的點(diǎn)連接起來。

探索活動(dòng)2反比例函數(shù)y?2的圖象.x2的圖象是曲線型的,且分成兩支.對(duì)此,學(xué)生第一次接觸有一定的難度,因此需x2的圖象.x

可以引導(dǎo)學(xué)生采用多種方式進(jìn)行自主探索活動(dòng):

2的圖象的方式與步驟進(jìn)行自主探索其圖象;x

222(2)可以通過探索函數(shù)y?與y??之間的關(guān)系,畫出y??的圖象.xxx

22探索活動(dòng)3反比例函數(shù)y??與y?的圖象有什么共同特征?xx(1)可以用畫反比例函數(shù)y?

引導(dǎo)學(xué)生從通過與一次函數(shù)的圖象的對(duì)比感受反比例函數(shù)圖象“曲線”及“兩支”的特征。(即雙曲線)反比例函數(shù)y?

k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當(dāng)k?0時(shí),圖象在第一、第x

初中數(shù)學(xué)教案第4篇教學(xué)目標(biāo)

1.了解公式的意義,使學(xué)生能用公式解決簡單的實(shí)際問題;

2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;

3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實(shí)踐又反作用于實(shí)踐。

教學(xué)建議

一、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):通過具體例子了解公式、應(yīng)用公式.

難點(diǎn):從實(shí)際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。

二、重點(diǎn)、難點(diǎn)分析

人們從一些實(shí)際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時(shí),首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計(jì)算時(shí),就是求代數(shù)式的值了。有的公式,可以借助運(yùn)算推導(dǎo)出來;有的公式,則可以通過實(shí)驗(yàn),從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會(huì)給我們認(rèn)識(shí)和改造世界帶來很多方便。

三、知識(shí)結(jié)構(gòu)

本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實(shí)際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議

1.對(duì)于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識(shí)公式中每一個(gè)字母、數(shù)字的意義,以及這些數(shù)量之間的對(duì)應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對(duì)公式的靈活應(yīng)用。

2.在教學(xué)過程中,應(yīng)使學(xué)生認(rèn)識(shí)有時(shí)問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運(yùn)算推導(dǎo)新公式。

3.在解決實(shí)際問題時(shí),學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對(duì)應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。這種從特殊到一般、再從一般到特殊認(rèn)識(shí)過程,有助于提高學(xué)生分析問題、解決問題的能力。

初中數(shù)學(xué)教案第5篇三維目標(biāo)

一、知識(shí)與技能

1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.

2.能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.

二、過程與方法

1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.

2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.

三、情感態(tài)度與價(jià)值觀

1.積極參與交流,并積極發(fā)表意見.

2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.

教學(xué)重點(diǎn)

掌握從物理問題中建構(gòu)反比例函數(shù)模型.

教學(xué)難點(diǎn)

從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問題,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.

教具準(zhǔn)備

多媒體課件.

教學(xué)過程

一、創(chuàng)設(shè)問題情境,引入新課

活動(dòng)1

問屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用.下面的例子就是其中之一.

在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培.

(1)求I與R之間的函數(shù)關(guān)系式;

(2)當(dāng)電流I=0.5時(shí),求電阻R的值.

設(shè)計(jì)意圖:

運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力.

師生行為:

可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.

教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo).

師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值.

生:

(1)解:設(shè)I=kR∵R=5,I=2,于是2=k5,所以k=10,∴I=10R.

(2)當(dāng)I=0.5時(shí),R=10I=100.5=20(歐姆).

師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng).”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么樣的原理呢?

生:這是古希臘科學(xué)家阿基米德的名言.

師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”:若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;

阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)

下面我們就來看一例子.

二、講授新課

活動(dòng)2

小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.

(1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?

(2)若想使動(dòng)力F不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長多少?

設(shè)計(jì)意圖:

物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用.

師生行為:

先由學(xué)生根據(jù)“杠桿定律”解決上述問題.

教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.

教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:

①學(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問題,從而建立與反比例函數(shù)的關(guān)系;

②學(xué)生能否面對(duì)困難,認(rèn)真思考,尋找解題的途徑;

③學(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對(duì)數(shù)學(xué)和物理有著濃厚的興趣.

師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.

生:解:(1)根據(jù)“杠桿定律”有

Fl=1200×0.5.得F=600l

當(dāng)l=1.5時(shí),F(xiàn)=6001.5=400.

因此,撬動(dòng)石頭至少需要400牛頓的力.

(2)若想使動(dòng)力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有

Fl=600,

l=600F.

當(dāng)F=400×12=200時(shí),

l=600200=3.

3-1.5=1.5(米)

因此,若想用力不超過400牛頓的一半,則動(dòng)力臂至少要如長1.5米.

生:也可用不等式來解,如下:

Fl=600,F(xiàn)=600l.

而F≤400×12=200時(shí).

600l≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超過400牛頓的一半,則動(dòng)力臂至少要加長1.5米.

生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出.

師:很棒!請(qǐng)同學(xué)們下去親自畫出圖象完成,現(xiàn)在請(qǐng)同學(xué)們思考下列問題:

用反比例函數(shù)的知識(shí)解釋:在我們使用橇棍時(shí),為什么動(dòng)力臂越長越省力?

生:因?yàn)樽枇妥枇Ρ鄄蛔?,設(shè)動(dòng)力臂為l,動(dòng)力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl(k為常數(shù)且k>0)

根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時(shí),在第一象限F隨l的增大而減小,即動(dòng)力臂越長越省力.

師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問題中的應(yīng)用.

活動(dòng)3

問題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時(shí),y=0.8.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請(qǐng)你預(yù)算一下本年度電力部門的純收人多少?

設(shè)計(jì)意圖:

在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對(duì)于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問題.

師生行為:

由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.

教師應(yīng)給予“學(xué)困生”以一定的幫助.

生:解:(1)∵y與x-0.4成反比例,

∴設(shè)y=kx-0.4(k≠0).

把x=0.65,y=0.8代入y=kx-0.4,得

k0.65-0.4=0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y與x之間的函數(shù)關(guān)系為y=15x-2

(2)根據(jù)題意,本年度電力部門的純收入為

(0.6-0.3)(1+y)=0.3(1+15x-2)=0.3(1+10.6×5-2)=0.3×2=0.6(億元)

答:本年度的純收人為0.6億元,

師生共析:

(1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;

(2)純收入=總收入-總成本.

三、鞏固提高

活動(dòng)4

一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請(qǐng)根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1kg/m3時(shí)二氧化碳?xì)怏w的體積V的值.

設(shè)計(jì)意圖:

進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.

師生行為

由學(xué)生獨(dú)立完成,教師講評(píng).

師:若要求出ρ=1.1kg/m3時(shí),V的值,首先V和ρ的函數(shù)關(guān)系.

生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ.

生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ,得

V=990ρ=9901.1=900(m3).

所以當(dāng)密度ρ=1.1kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3.

四、課時(shí)小結(jié)

活動(dòng)5

你對(duì)本節(jié)內(nèi)容有哪些認(rèn)識(shí)?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解析式,再根據(jù)解析式解得.

設(shè)計(jì)意圖:

這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.

師生行為:

學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲,然后由小組代表在全班交流.

教師組織學(xué)生小結(jié).

反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識(shí)間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.

板書設(shè)計(jì)

17.2實(shí)際問題與反比例函數(shù)(三)

1.

2.用反比例函數(shù)的知識(shí)解釋:在我們使用撬棍時(shí),為什么動(dòng)力臂越長越省力?

設(shè)阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數(shù)且k>0).動(dòng)力和動(dòng)力臂分別為F,l.則根據(jù)杠桿定理,

Fl=k即F=kl(k>0且k為常數(shù)).

由此可知F是l的反比例函數(shù),并且當(dāng)k>0時(shí),F(xiàn)隨l的增大而減?。?/p>

活動(dòng)與探究

學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.

(1)綠化帶面積是多少?你能寫出這一函數(shù)表達(dá)式嗎?

(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?

x(m)10203040

y(m)

過程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說明點(diǎn)A的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.

結(jié)果:(1)綠化帶面積為10×40=400(m2)

設(shè)該反比例函數(shù)的表達(dá)式為y=kx,

∵圖象經(jīng)過點(diǎn)A(40,10)把x=40,y=10代入,得10=k40,解得,k=400.

∴函數(shù)表達(dá)式為y=400x.

(2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403,10.從圖中可以看出。若長不超過40m,則它的寬應(yīng)大于等于10m。

初中數(shù)學(xué)教案第6篇一學(xué)期的工作結(jié)束了,可以說緊張忙碌卻收獲多多?;仡欉@學(xué)期的工作,我教九(4)班的數(shù)學(xué),我總是在不斷地摸索和學(xué)習(xí)中進(jìn)行教學(xué),工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結(jié)經(jīng)驗(yàn),吸取教訓(xùn),使以后的工作能夠有效、有序地進(jìn)行,現(xiàn)將教學(xué)所得總結(jié)如下:

一、在備課方面

在上課前我總是查閱很多教參、教輔,力求深入理解教材,準(zhǔn)確把握難重點(diǎn),總是要經(jīng)過深思熟慮之后才寫教案,力爭做到熟知知識(shí)要點(diǎn),心中有數(shù)。

二、在教學(xué)過程方面

在課堂教學(xué)中我一直注重學(xué)生的參與。讓學(xué)生參與到課堂教學(xué)中來,讓他們自主的去探究問題,發(fā)現(xiàn)知識(shí)。波利亞說:“學(xué)習(xí)任何知識(shí)的最佳途徑都是由自己去發(fā)現(xiàn),因?yàn)檫@種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系。”只有充分發(fā)揮學(xué)生的主體作用,讓學(xué)生人人參與,才能最大限度地促進(jìn)學(xué)生的發(fā)展。但還是難免受傳統(tǒng)教學(xué)觀念的影響,加之經(jīng)驗(yàn)不足,不太敢放手,怕完成不了當(dāng)趟課的教學(xué)任務(wù)。后來在學(xué)校“”的教學(xué)模式下,才開始進(jìn)一步嘗試,并在不斷的嘗試中總結(jié)經(jīng)驗(yàn)。

三、工作中存在的問題

1)、教材挖掘不深入。

2)、教法不靈活,不能吸引學(xué)生學(xué)習(xí),對(duì)學(xué)生的引導(dǎo)、啟發(fā)不足。

3)、新課標(biāo)下新的教學(xué)思想學(xué)習(xí)不深入。對(duì)學(xué)生的自主學(xué)習(xí),合作學(xué)習(xí),缺乏理論指導(dǎo)

4)、差生末抓在手。由于對(duì)學(xué)生的了解不夠,對(duì)學(xué)生的學(xué)習(xí)態(tài)度、思維能力不太清楚。上課和復(fù)習(xí)時(shí)該講的都講了,學(xué)生掌握的情況怎樣,教師心中無數(shù)。導(dǎo)致了教學(xué)中的盲目性。

四、今后努力的方向

1)、加強(qiáng)學(xué)習(xí),學(xué)習(xí)新教學(xué)模式下新的教學(xué)思想。

2)、熟讀初一到初三的數(shù)學(xué)教材,深入挖掘教材,進(jìn)一步把握知識(shí)點(diǎn)和考點(diǎn)。

3)、多聽課,學(xué)習(xí)老教師對(duì)知識(shí)點(diǎn)的處理和對(duì)教材的把握,以及他們處理突發(fā)事件方法。

4)、加強(qiáng)轉(zhuǎn)差培優(yōu)力度。

5)、加強(qiáng)教學(xué)反思,加大教學(xué)投入。

一學(xué)期的教學(xué)工作即將結(jié)束,這半年的教學(xué)工作很苦,很累,但在不斷的摸索中,自己學(xué)到了很多東西。今后我會(huì)更加努力提高自己的業(yè)務(wù)水平。

初中數(shù)學(xué)教案第7篇一、教材分析:

反比例函數(shù)的圖象與性質(zhì)是對(duì)正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對(duì)比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時(shí)的學(xué)習(xí)是學(xué)生對(duì)函數(shù)的圖象與性質(zhì)一個(gè)再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時(shí)應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對(duì)反比例函數(shù)有一個(gè)形象和直觀的認(rèn)識(shí)。

二、教學(xué)目標(biāo)分析

根據(jù)二期課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動(dòng)起學(xué)生參與教學(xué)過程”的精神。在教學(xué)設(shè)計(jì)上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識(shí)的同時(shí)激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動(dòng)探索。因此把教學(xué)目標(biāo)確定為:

1、掌握反比例函數(shù)的概念,能夠根據(jù)已知條件求出反比例函數(shù)的解析式;學(xué)會(huì)用描點(diǎn)法畫出反比例函數(shù)的圖象;掌握?qǐng)D象的特征以及由函數(shù)圖象得到的函數(shù)性質(zhì)。

2、在教學(xué)過程中引導(dǎo)學(xué)生自主探索、思考及想象,從而培養(yǎng)學(xué)生觀察、分析、歸納的綜合能力。

3、通過學(xué)習(xí)培養(yǎng)學(xué)生積極參與和勇于探索的精神。

三、教學(xué)重點(diǎn)難點(diǎn)分析

本堂課的重點(diǎn)是掌握反比例函數(shù)的定義、圖象特征以及函數(shù)的性質(zhì);

難點(diǎn)則是如何抓住特征準(zhǔn)確畫出反比例函數(shù)的圖象。

為了突出重點(diǎn)、突破難點(diǎn)。我設(shè)計(jì)并制作了能動(dòng)態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動(dòng)探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)。

四、教學(xué)方法

鑒于教材特點(diǎn)及初二學(xué)生的年齡特點(diǎn)、心理特征和認(rèn)知水平,設(shè)想采用問題教學(xué)法和對(duì)比教學(xué)法,用層層推進(jìn)的提問啟發(fā)學(xué)生深入思考,主動(dòng)探究,主動(dòng)獲取知識(shí)。同時(shí)注意與學(xué)生已有知識(shí)的聯(lián)系,減少學(xué)生對(duì)新概念接受的困難,給學(xué)生充分的自主探索時(shí)間。通過教師的引導(dǎo),啟發(fā)調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生在課堂上多活動(dòng)、多觀察,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來,組織學(xué)生參與“探究——討論——交流——總結(jié)”的學(xué)習(xí)活動(dòng)過程,同時(shí)在教學(xué)中,還充分利用多媒體教學(xué),通過演示,操作,觀察,練習(xí)等師生的共同活動(dòng)中啟發(fā)學(xué)生,讓每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,培養(yǎng)學(xué)生直覺思維能力。

五、學(xué)法指導(dǎo)

本堂課立足于學(xué)生的“學(xué)”,要求學(xué)生多動(dòng)手,多觀察,從而可以幫助學(xué)生形成分析、對(duì)比、歸納的思想方法。在對(duì)比和討論中讓學(xué)生在“做中學(xué)”,提高學(xué)生利用已學(xué)知識(shí)去主動(dòng)獲取新知識(shí)的能力。因此在課堂上要采用積極引導(dǎo)學(xué)生主動(dòng)參與,合作交流的方法組織教學(xué),使學(xué)生真正成為教學(xué)的主體,體會(huì)參與的樂趣,成功的喜悅,感知數(shù)學(xué)的奇妙。

六、教學(xué)過程

(一)復(fù)習(xí)引入——反函數(shù)解析式

練習(xí)1:寫出下列各題的關(guān)系式:

(1)正方形的周長C和它的一邊的長a之間的關(guān)系

(2)運(yùn)動(dòng)會(huì)的田徑比賽中,運(yùn)動(dòng)員小王的平均速度是8米/秒,他所跑過的路程s和所用時(shí)間t之間的關(guān)系

(3)矩形的面積為10時(shí),它的長x和寬y之間的關(guān)系

(4)王師傅要生產(chǎn)100個(gè)零件,他的工作效率x和工作時(shí)間t之間的關(guān)系

問題1:請(qǐng)大家判斷一下,在我們寫出來的這些關(guān)系式中哪些是正比例函數(shù)?

問題1主要是復(fù)習(xí)正比例函數(shù)的定義,為后面學(xué)生運(yùn)用對(duì)比的方法給出反比例函數(shù)的定義打下基礎(chǔ)。

問題2:那么請(qǐng)大家再仔細(xì)觀察一下,其余兩個(gè)函數(shù)關(guān)系式有什么共同點(diǎn)嗎?

通過問題2來引出反比例函數(shù)的解析式,請(qǐng)學(xué)生對(duì)比正比例函數(shù)的定義來給出反比例函數(shù)的定義,這不僅有助于對(duì)舊知識(shí)的復(fù)習(xí)和鞏固,同時(shí)還可以培養(yǎng)學(xué)生的對(duì)比和探究能力。

例題1:已知變量y與x成反比例,且當(dāng)x=2時(shí),y=9

(1)寫出y與x之間的函數(shù)解析式

(2)當(dāng)x=3、5時(shí),求y的值

(3)當(dāng)y=5時(shí),求x的值

通過對(duì)例1的學(xué)習(xí)使學(xué)生掌握如何根據(jù)已知條件來求出反比例函數(shù)的解析式。在解題過程中,引導(dǎo)學(xué)生運(yùn)用在求正比例函數(shù)的解析式時(shí)用到的“待定系數(shù)法”,先設(shè)反比例函數(shù)為,再把相應(yīng)的x,y值代入求出k,k值的確定,函數(shù)解析式也就確定了。

課堂練習(xí):已知x與y成反比例,根據(jù)以下條件,求出y與x之間的函數(shù)關(guān)系式

(1)x=2,y=3(2)x=,y=

通過此題,對(duì)學(xué)生掌握如何根據(jù)已知條件去求反比例函數(shù)的解析式的學(xué)習(xí)情況做一個(gè)簡單的反饋。

(二)探究學(xué)習(xí)1——函數(shù)圖象的畫法

問題3:如何畫出正比例函數(shù)的圖象?

通過問題3來復(fù)習(xí)正比例函數(shù)圖象的畫法主要分為列表、描點(diǎn)、連線三個(gè)步驟,為學(xué)習(xí)反比例函數(shù)圖像的畫法打下基礎(chǔ)。

問題4:那反比例函數(shù)的圖象應(yīng)該怎樣去畫呢?

在教學(xué)過程中可以引導(dǎo)學(xué)生仿照正比例函數(shù)圖象的的畫法。

設(shè)想的教學(xué)設(shè)計(jì)是:

(1)引導(dǎo)學(xué)生運(yùn)用在畫正比例函數(shù)圖象中所學(xué)到的方法,分小組討論嘗試,采用列表、描點(diǎn)、連線的方法畫出函數(shù)和的圖象;

(2)老師邊巡視,邊指導(dǎo),用實(shí)物投影儀反映一些學(xué)生在函數(shù)圖象中出現(xiàn)的典型錯(cuò)誤,和學(xué)生一起找出錯(cuò)誤的地方,分析原因;

(3)隨后老師在黑板上演示畫好反比例函數(shù)圖像的步驟,展示正確的函數(shù)圖象,引導(dǎo)學(xué)生觀察其圖象特征(雙曲線有兩個(gè)分支)。

初二學(xué)生是首次接觸到雙曲線這種比較特殊函數(shù)圖象,設(shè)想學(xué)生可能會(huì)在下面幾個(gè)環(huán)節(jié)中出錯(cuò):

(1)在“列表”這一環(huán)節(jié)

在取點(diǎn)時(shí)學(xué)生可能會(huì)取零,在這里可以引導(dǎo)學(xué)生結(jié)合代數(shù)的方法得出x不能為零。也可能由于在取點(diǎn)時(shí)的不恰當(dāng),導(dǎo)致函數(shù)圖象的不完整、不對(duì)稱。在這里應(yīng)該要指導(dǎo)學(xué)生在列表時(shí),自變量x的取值可以選取絕對(duì)值相等而符號(hào)相反的數(shù),相應(yīng)的就得到絕對(duì)相等而符號(hào)相反的對(duì)應(yīng)的函數(shù)值,這樣可以簡化計(jì)算的手續(xù),又便于在坐標(biāo)平面內(nèi)找到點(diǎn)。

(2)在“連線”這一環(huán)節(jié)

學(xué)生畫的點(diǎn)與點(diǎn)之間連線可能會(huì)有端點(diǎn),未能用光滑的線條連接。因而在這里要特別要強(qiáng)調(diào)在將所選取的點(diǎn)連結(jié)時(shí),應(yīng)該是“光滑曲線”,為以后學(xué)習(xí)二次函數(shù)的圖像打下基礎(chǔ)。為了使函數(shù)圖象清晰明顯,可以引導(dǎo)學(xué)生注意盡量選取較多的自變量x的值和對(duì)應(yīng)的函數(shù)值y,以便在坐標(biāo)平面內(nèi)得到較多的“點(diǎn)”,畫出曲線。

從而引導(dǎo)學(xué)生畫出正確的函數(shù)圖象。

(3)圖象與x軸或y軸相交

在這里我認(rèn)為可以埋下一個(gè)伏筆,給學(xué)生留下一個(gè)懸念,為后面學(xué)習(xí)函數(shù)的性質(zhì)打下基礎(chǔ)。

需要說明的是:利用多媒體課件學(xué)習(xí)能吸引學(xué)生的注意力,引起學(xué)生進(jìn)一步學(xué)習(xí)的興趣。不過,盡管多媒體的演示既快又準(zhǔn)確,我認(rèn)為在學(xué)生第學(xué)畫反比例函數(shù)圖象的過程中,老師還是應(yīng)該在黑板上認(rèn)真示范畫出圖象的每一個(gè)步驟,畢竟多媒體還是不能替代我們平時(shí)老師在黑板上板書。

鞏固練習(xí):畫出函數(shù)和的圖象

通過鞏固練習(xí),讓學(xué)生再次動(dòng)手畫出函數(shù)圖象,改正在初次畫圖象時(shí)出現(xiàn)在一些問題。老師使用函數(shù)圖象的課件,用屏幕顯示的函數(shù)圖象驗(yàn)證學(xué)生畫出的函數(shù)圖象的準(zhǔn)確性。

(三)探究學(xué)習(xí)2——函數(shù)圖象性質(zhì)

1、圖象的分布情況

問題5:請(qǐng)大家回憶一下正比例函數(shù)的分布情況是怎么樣的呢?

提出問題5主要是起到鞏固復(fù)習(xí),為引導(dǎo)學(xué)生學(xué)習(xí)反比例函數(shù)圖象的分布情況打下基礎(chǔ)。

問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個(gè)分支,那么它的分布情況又是怎么樣的呢?

在這一環(huán)節(jié)中的設(shè)計(jì):

(1)引導(dǎo)學(xué)生對(duì)比正比例函數(shù)圖象的分布,啟發(fā)他們主動(dòng)探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時(shí)間;

(2)充分運(yùn)用多媒體的優(yōu)勢(shì)進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個(gè)k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動(dòng)態(tài)演變過程。把不同的函數(shù)圖象集中到一個(gè)屏幕中,便于學(xué)生對(duì)比和探究。學(xué)生通過觀察及對(duì)比,對(duì)反比例函數(shù)圖象的分布與k的關(guān)系有一個(gè)直觀的了解;

(3)組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時(shí),函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k0時(shí),自變量x逐漸增大時(shí),y的值則隨著逐漸減??;當(dāng)k0,分別比較在第三象限x=—2,第一象限x=2時(shí)的y的值的大小,則以上性質(zhì)是否依然成立?學(xué)生的回答應(yīng)該是:不成立。這時(shí)老師再請(qǐng)學(xué)生做小結(jié):必須限定在每一個(gè)象限內(nèi),才有以上性質(zhì)成立。

問題9:當(dāng)函數(shù)圖象的兩個(gè)分支無限延伸時(shí),它與x軸、y軸相交嗎?為什么?

在這個(gè)環(huán)節(jié)中,可以結(jié)合剛才學(xué)生所畫的錯(cuò)誤圖象,引導(dǎo)學(xué)生可以通過代數(shù)的方法分析反比例函數(shù)的解析式,由分母不能為零,得x不能為零。由k≠0,得y必不為零,從而驗(yàn)證了反比例函數(shù)的圖象。當(dāng)兩個(gè)分支無限延伸時(shí),可以無限地逼近x軸、y軸,但永遠(yuǎn)不會(huì)與兩軸相交。隨即強(qiáng)調(diào)畫圖時(shí)要注意準(zhǔn)確性。

(四)備用思考題

1、反比例函數(shù)的圖象在第一、三象限,求a的取值范圍

2、當(dāng)m為何值時(shí),y是x的正比例函數(shù);當(dāng)m為何值時(shí),y是x的反比例函數(shù)

(五)小結(jié):

初中數(shù)學(xué)教案第8篇教學(xué)目標(biāo)

1、經(jīng)歷不同的拼圖方法驗(yàn)證公式的過程,在此過程中加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。

2、通過驗(yàn)證過程中數(shù)與形的結(jié)合,體會(huì)數(shù)形結(jié)合的思想以及數(shù)學(xué)知識(shí)之間內(nèi)在聯(lián)系,每一部分知識(shí)并不是孤立的。

3、通過豐富有趣的拼圖活動(dòng),經(jīng)歷觀察、比較、拼圖、計(jì)算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達(dá)的能力,獲得一些研究問題與合作交流方法與經(jīng)驗(yàn)。

4、通過獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動(dòng)增強(qiáng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。

重點(diǎn)

1、通過綜合運(yùn)用已有知識(shí)解決問題的過程,加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。

2、通過拼圖驗(yàn)證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗(yàn)。

難點(diǎn):利用數(shù)形結(jié)合的方法驗(yàn)證公式

教學(xué)方法:動(dòng)手操作,合作探究課型新授課教具投影儀

情景設(shè)置:

你已知道的關(guān)于驗(yàn)證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨(dú)立思考和討論的時(shí)間,讓學(xué)生回想前面拼圖。)

新課講解:

把幾個(gè)圖形拼成一個(gè)新的圖形,再通過圖形面積的計(jì)算,常常可以得到一些有用的式子。美國第二十任總統(tǒng)伽菲爾德就由這個(gè)圖(由兩個(gè)邊長分別為a、b、c的直角三角形和一個(gè)兩條直角邊都是c的直角三角形拼成一個(gè)新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:

教師接著在介紹教材第94頁例題的拼法及相關(guān)公式

提問:還能通過怎樣拼圖來解決以下問題

(1)任意選取若干塊這樣的硬紙片,嘗試拼成一個(gè)長方形,計(jì)算它的面積,并寫出相應(yīng)的等式;

(2)任意寫出一個(gè)關(guān)于a、b的二次三項(xiàng)式,如a2+4ab+3b2

試用拼一個(gè)長方形的方法,把這個(gè)二次三項(xiàng)式因式分解。

這個(gè)問題要給予學(xué)生充足的時(shí)間和空間進(jìn)行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時(shí)鼓勵(lì)學(xué)生在拼圖過程中進(jìn)行交流合作

了解學(xué)生拼圖的情況及利用自己的拼圖驗(yàn)證的情況。教師在巡視過程中,及時(shí)指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗(yàn)證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。

小結(jié):

從這節(jié)課中你有哪些收獲?

(教師應(yīng)給予學(xué)生充分的時(shí)間鼓勵(lì)學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵(lì)、多肯定。最后,教師要對(duì)學(xué)生所說的進(jìn)行全面的總結(jié)。)

學(xué)生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

學(xué)生拿出準(zhǔn)備好的硬紙板制作

給學(xué)生充分的時(shí)間進(jìn)行拼圖、思考、交流經(jīng)驗(yàn),對(duì)于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。

初中數(shù)學(xué)教案第9篇教學(xué)目標(biāo):

(1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

(2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。

重點(diǎn)難點(diǎn):

能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

教學(xué)過程:

一、試一試

1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格中,

2.x的值是否可以任意取?有限定范圍嗎?

3.我們發(fā)現(xiàn),當(dāng)AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,

對(duì)于1,可讓學(xué)生根據(jù)表中給出的AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對(duì)前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識(shí):當(dāng)AB的長為5cm,BC的長為10m時(shí),圍成的矩形面積最大;最大面積為50m2。對(duì)于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識(shí),x的值不可以任意取,有限定范圍,其范圍是0<x<10。對(duì)于3,教師可提出問題,(1)當(dāng)AB=xm時(shí),BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函數(shù)關(guān)系式。

二、提出問題

某商店將每件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價(jià)、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷售利潤最大?在這個(gè)問題中,可提出如下問題供學(xué)生思考并回答:

1.商品的利潤與售價(jià)、進(jìn)價(jià)以及銷售量之間有什么關(guān)系?

[利潤=(售價(jià)-進(jìn)價(jià))×銷售量]

2.如果不降低售價(jià),該商品每件利潤是多少元?一天總的利潤是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降價(jià)x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]

5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。

[y=(10-8-x)(100+100x)(0≤x≤2)]

將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0<x<10=化為:

y=-2x2+20x(0<x<10)……………(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D(0≤x≤2)……(2)

三、觀察;概括

1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;

(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?

(各有1個(gè))

(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)

(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?

(都是用自變量的二次多項(xiàng)式來表示的)

(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。

2.二次函數(shù)定義:形如y=ax2+bx+c(a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

四、課堂練習(xí)

1.(口答)下列函數(shù)中,哪些是二次函數(shù)?

(1)y=5x+1(2)y=4x2-1

(3)y=2x3-3x2(4)y=5x4-3x+1

2.P3練習(xí)第1,2題。

五、小結(jié)

1.請(qǐng)敘述二次函數(shù)的定義.

2,許多實(shí)際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請(qǐng)你聯(lián)系生活實(shí)際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。

六、作業(yè):略

初中數(shù)學(xué)教案第10篇一、教學(xué)目標(biāo)

1.使學(xué)生初步掌握一元一次方程解簡單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡單的應(yīng)用題;

2.培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決問題的能力;

3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣。

二、教學(xué)重點(diǎn)和難點(diǎn)

一元一次方程解簡單的應(yīng)用題的方法和步驟。

三、課堂教學(xué)過程設(shè)計(jì)

(一)從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實(shí)際問題的有關(guān)知識(shí),那么,一個(gè)實(shí)際問題能否應(yīng)用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?

為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題。

例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。

(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)

解法1:(4+2)÷(3-1)=3。

答:某數(shù)為3。

(其

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論