武漢大學(xué)模式識別第一章課件_第1頁
武漢大學(xué)模式識別第一章課件_第2頁
武漢大學(xué)模式識別第一章課件_第3頁
武漢大學(xué)模式識別第一章課件_第4頁
武漢大學(xué)模式識別第一章課件_第5頁
已閱讀5頁,還剩38頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

模式識別

思考如何區(qū)分蘋果與桔子?教學(xué)目標(biāo)掌握模式識別的基本概念和方法有效地運用所學(xué)知識和方法解決實際問題為研究新的模式識別的理論和方法打下基礎(chǔ)

參考文獻(xiàn)R.Duda,P.Hart,D.Stork,PatternClassification,secondedition,2000(有中譯本).邊肇祺,模式識別(第二版),清華大學(xué)出版社,2000。蔡元龍,模式識別,西北電訊工程學(xué)院出版社,1986。第一章緒論什么是模式?廣義地說,存在于時間和空間中可觀察的物體,如果我們可以區(qū)別它們是否相同或是否相似,都可以稱之為模式。模式是一個客觀事物的描述,及一個可以用來仿效的完善的例子。模式所指的不是事物本身,而是從事物獲得的信息,因此,模式往往表現(xiàn)為具有時間和空間分布的信息。模式的直觀特性:可觀察性可區(qū)分性相似性模式識別的概念模式識別–直觀,無所不在,“物以類聚,人以群分”周圍物體的認(rèn)知:桌子、椅子人的識別:張三、李四聲音的辨別:汽車、火車,狗叫、人語氣味的分辨:炸帶魚、紅燒肉人和動物的模式識別能力是極其平常的,但對計算機來說卻是非常困難的。模式識別的研究目的:利用計算機對物理對象進(jìn)行分類,在錯誤概率最小的條件下,使識別的結(jié)果盡量與客觀物體相符合。Y=F(X)X的定義域取自特征集Y的值域為類別的標(biāo)號集F是模式識別的判別方法模式識別的應(yīng)用(舉例)生物學(xué)自動細(xì)胞學(xué)、染色體特性研究、遺傳研究天文學(xué)天文望遠(yuǎn)鏡圖像分析、自動光譜學(xué)經(jīng)濟學(xué)股票交易預(yù)測、企業(yè)行為分析醫(yī)學(xué)心電圖分析、腦電圖分析、醫(yī)學(xué)圖像分析模式識別的應(yīng)用(舉例)工程產(chǎn)品缺陷檢測、特征識別、語音識別、自動導(dǎo)航系統(tǒng)、污染分析軍事航空攝像分析、雷達(dá)和聲納信號檢測和分類、自動目標(biāo)識別安全指紋識別、人臉識別、監(jiān)視和報警系統(tǒng)模式識別方法模式識別系統(tǒng)的目標(biāo):在特征空間和解釋空間之間找到一種映射關(guān)系,這種映射也稱之為假說。特征空間:從模式得到的對分類有用的度量、屬性或基元構(gòu)成的空間。解釋空間:將c個類別表示為 其中為所屬類別的集合,稱為解釋空間。假說的兩種獲得方法(續(xù))非監(jiān)督學(xué)習(xí)、數(shù)據(jù)驅(qū)動或演繹假說:在解釋空間中找到一個與特征空間的結(jié)構(gòu)相對應(yīng)的假說。這種方法試圖找到一種只以特征空間中的相似關(guān)系為基礎(chǔ)的有效假說。在沒有先驗知識的情況下,通常采用聚類分析方法,基于“物以類聚”的觀點,用數(shù)學(xué)方法分析各特征向量之間的距離及分散情況;如果特征向量集聚集若干個群,可按群間距離遠(yuǎn)近把它們劃分成類;這種按各類之間的親疏程度的劃分,若事先能知道應(yīng)劃分成幾類,則可獲得更好的分類結(jié)果。模式分類的主要方法數(shù)據(jù)聚類統(tǒng)計分類結(jié)構(gòu)模式識別神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)聚類目標(biāo):用某種相似性度量的方法將原始數(shù)據(jù)組織成有意義的和有用的各種數(shù)據(jù)集。是一種非監(jiān)督學(xué)習(xí)的方法,解決方案是數(shù)據(jù)驅(qū)動的。結(jié)構(gòu)模式識別該方法通過考慮識別對象的各部分之間的聯(lián)系來達(dá)到識別分類的目的。識別采用結(jié)構(gòu)匹配的形式,通過計算一個匹配程度值(matchingscore)來評估一個未知的對象或未知對象某些部分與某種典型模式的關(guān)系如何。當(dāng)成功地制定出了一組可以描述對象部分之間關(guān)系的規(guī)則后,可以應(yīng)用一種特殊的結(jié)構(gòu)模式識別方法–句法模式識別,來檢查一個模式基元的序列是否遵守某種規(guī)則,即句法規(guī)則或語法。神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)是受人腦組織的生理學(xué)啟發(fā)而創(chuàng)立的。由一系列互相聯(lián)系的、相同的單元(神經(jīng)元)組成。相互間的聯(lián)系可以在不同的神經(jīng)元之間傳遞增強或抑制信號。增強或抑制是通過調(diào)整神經(jīng)元相互間聯(lián)系的權(quán)重系數(shù)來(weight)實現(xiàn)。神經(jīng)網(wǎng)絡(luò)可以實現(xiàn)監(jiān)督和非監(jiān)督學(xué)習(xí)條件下的分類。模式識別系統(tǒng)模式識別系統(tǒng)的基本構(gòu)成數(shù)據(jù)獲取特征提取和選擇預(yù)處理分類決策分類器設(shè)計模式識別系統(tǒng)組成單元特征提取和選擇:對原始數(shù)據(jù)進(jìn)行變換,得到最能反映分類本質(zhì)的特征測量空間:原始數(shù)據(jù)組成的空間特征空間:分類識別賴以進(jìn)行的空間模式表示:維數(shù)較高的測量空間->維數(shù)較低的特征空間分類決策:在特征空間中用模式識別方法把被識別對象歸為某一類別基本做法:在樣本訓(xùn)練集基礎(chǔ)上確定某個判決規(guī)則,使得按這種規(guī)則對被識別對象進(jìn)行分類所造成的錯誤識別率最小或引起的損失最小模式識別過程實例在傳送帶上用光學(xué)傳感器件對魚按品種分類 鱸魚(Seabass) 品種 鮭魚(Salmon)模式分類器的獲取和評測過程數(shù)據(jù)采集特征選取模型選擇訓(xùn)練和測試計算結(jié)果和復(fù)雜度分析,反饋訓(xùn)練和測試訓(xùn)練集:是一個已知樣本集,在監(jiān)督學(xué)習(xí)方法中,用它來開發(fā)出模式分類器。測試集:在設(shè)計識別和分類系統(tǒng)時沒有用過的獨立樣本集。系統(tǒng)評價原則:為了更好地對模式識別系統(tǒng)性能進(jìn)行評價,必須使用一組獨立于訓(xùn)練集的測試集對系統(tǒng)進(jìn)行測試。實例:統(tǒng)計模式識別19名男女同學(xué)進(jìn)行體檢,測量了身高和體重,但事后發(fā)現(xiàn)其中有4人忘記填寫性別,試問(在最小錯誤的條件下)這4人是男是女?體檢數(shù)值如下:實例:統(tǒng)計模式識別(續(xù))待識別的模式:性別(男或女)測量的特征:身高和體重訓(xùn)練樣本:15名已知性別的樣本特征目標(biāo):希望借助于訓(xùn)練樣本的特征建立判別函數(shù)(即數(shù)學(xué)模型)實例:統(tǒng)計模式識別(續(xù))由訓(xùn)練樣本得到的特征空間分布圖實例:統(tǒng)計模式識別(續(xù))從圖中訓(xùn)練樣本的分布情況,找出男、女兩類特征各自的聚類特點,從而求取一個判別函數(shù)(直線或曲線)。只要給出待分類的模式特征的數(shù)值,看它在特征平面上落在判別函數(shù)的哪一側(cè),就可以判別是男還是女了。實例:句法模式識別(續(xù))將整個場景圖像結(jié)構(gòu)分解成一些比較簡單的子圖像的組合;子圖像又用一些更為簡單的基本圖像單元來表示,直至子圖像達(dá)到了我們認(rèn)為的最簡單的圖像單元(基元);所有這些基元按一定的結(jié)構(gòu)關(guān)系來表示,利用多級樹結(jié)構(gòu)對其進(jìn)行描述(這種描述可以采用形式語言理論)。實例:句法模式識別問題:如何利用對圖像的結(jié)構(gòu)信息描述,識別如下所示圖片:實例:句法模式識別(續(xù))多級樹描述結(jié)構(gòu)實例:句法模式識別(續(xù))訓(xùn)練過程:用已知結(jié)構(gòu)信息的圖像作為訓(xùn)練樣本,先識別出基元(比如場景圖中的X、Y、Z等簡單平面)和它們之間的連接關(guān)系(例如長方體E是由X、Y和Z三個面拼接而成),并用字母符號代表之;然后用構(gòu)造句子的文法來描述生成這幅場景的過程,由此推斷出生成該場景的一種文法。實例:句法模式識別(續(xù))識別過程:先對未知結(jié)構(gòu)信息的圖像進(jìn)行基元提取及其相互結(jié)構(gòu)關(guān)系的識別;然后用訓(xùn)練過程獲得的文法做句法分析;如果能被已知結(jié)構(gòu)信息的文法分析出來,則該幅未知圖像與訓(xùn)練樣本具有相同的結(jié)構(gòu)(識別成功),否則就不是這種結(jié)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論