




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
WHITEPAPER
SourcingAutomation
IntelligentSourcingAutomationisanewcategoryofsoftwarethatleveragesintelligentsystemstoautomatecomplexhumanreasoningthatexceedsexpertstandards.ItisconstructedusingamultiplicityofAItechniquestoencodeintelligentreasoningatvariousstagesinasourcingevent,fromthedesignofasourcingeventthroughtotheconclusionofanawardingstrategy.ThiswhitepaperelaboratesonkeyrecenttechnologicaladvancesthatpermitthisnewintelligentautomationandthepathtowiderdeploymentofSourcingAutomation.
Originalpublishdate2018;updatedJanuary2022
K
K
WhitePaper:SourcingAutomation
2
Introduction
SourcingAutomationisanewcategoryofsoftwarethatleveragesintelligentsystemstoautomatecomplexhumanreasoningthatexceedsexpertstandards.ItisconstructedusingamultiplicityofAItechniquestoencodeintelligentreasoningatvariousstagesinasourcingevent,fromthedesignofasourcingeventthroughtotheconclusionofanawardingstrategy.ThisacademicwhitepaperelaboratesonthekeyrecenttechnologicaladvancesthatpermitthisnewintelligentautomationandthepathtowiderdeploymentofSourcing
Automation.
IntelligentSystemsandArtificialIntelligence(AI)
AIisdeliveringmajoradvancesinmanyfields,frommedicaldiagnosticstoalgorithmictradingandpokerbots.IntelligentSystemsincludeAIandothertechniquessuchasstatisticalinferenceandprobabilisticreasoning.WhileAIplaysavitalroleindeliveringintelligentsystems,analystsoftenunderestimatethecollectivepowerofcomplementarytechniquestodeliversolutionstoautomateprocesses.
Keelvartakesapragmaticviewwhenselectingthemostappropriatetechnologicalsolutionforaspecifictaskinthesourcingprocessthatrequiresautomation.Forexample,outlierdetectionrequiresstatisticalinference,whereascategoryclassificationrequiresNaturalLanguageProcessingandMachineLearning.Whencombined,thesetechniquesformanintelligentsystemthatdrivesautomationacrossnumerousstepsthatthemselvesareindependentlyautomatedindifferentways.
StrategicSourcingprocessesaretooslow,fewpeopleunderstandbestpractice,andevenfewerhavesufficienttimeoraccesstotherighttoolstotrulyattainhighestquality.Suppliersareevenmorefrustratedbypoorsystemsandthequalityofthevariousprocessestheyencounter.SourcingAutomationaddressesthesefailingsbyleveragingAItoautomatebestpracticeandprovidingreliableexcellenceinanefficientmanner.
K
WhitePaper:SourcingAutomation
3
SourcingAutomation
Automationof‘downstream’activitiesinprocurementhasbeenacceleratinginrecentyears.RoboticProcessAutomation(RPA)builtonsimplerepetitiveroutinescandrivesavings,speed,andreliability.However,automationofcomplexsourcingactivitiesdeliversgreaterstrategicbenefits.
Advantagesintermsofimprovedmechanismsformanagingcompetitivebidprocesses,supplierdiscovery,innovationsupport,improvedspeedofexecution,aswellasagilitytorespondtomarketeventsoffercompellingadvantagesovermanualsourcingprocesses.IntelligentautomationisalsocriticalforsourcingbecausenuancedandcomplexdecisionsrequireAIsystemstomakedecisionsthatoutperformhumanexpertsintermsofspeedandquality.
DrivingAutomation:AnAnalogy
forSourcingAutomation
TheautomationofdrivingisanaptanalogyforSourcingAutomation.Forpersonaltransport,travelerswishtosummonavehicle,instructittonavigatetoadestination,andtravelsafely,makingdueprogresswithoptimalrouting.Similarly,sourcingteamsknowinadvancewhattheobjectiveisbutneedtonavigateatime-consumingpathofcomplexinteractionsalongthatpathtoreachadesiredend-goal.
Often,theyknowlittleaboutthesupplylandscapebecausetheymayhaveworkedinothercategories,arenewtoprocurement,orweretrainedinadifferentdiscipline.
Fromatechnologyperspectivethesimilaritiesarealsoclear.Carsrequirelightdetectionandranging(LiDAR)toseeandheartheirsurroundingsandpredictwhatwillhappen.AutonomouscarsusesensoryawarenessandAItoconductinferencefromsurroundings,whichiscriticalforsafedriving.LiDARsystemsgiveacompletepictureoftheimmediateenvironment,andAI-basedMachineVisionwatchesforpotentialdangerbyinferringwhatobjects,people,oranimalsarenearby,andtheirvelocityandacceleration.
K
WhitePaper:SourcingAutomation
4
Figure1:AutonomousVehicles
InSourcing,thekeydatathatneedtobeunderstoodiscontainedinstructureddatasheetsdescribingthegoodsandservicesbeingprocured,transposedfromExcelorinternalsystemstotablesinaKeelvardatabaseviaMachineLearning-basedclassification.
Therowsofdata,thecolumnheaders,invitedsuppliers,summarytext,eventcurrencies,andnumerousotherparametersallofferguidancetoAIastohowitshouldconductasourcingprocess.
Ofcourse,theanalogyendswhenweconsiderthephysicalworldandthedangersfacedonroads.Thephysicaldimensionsofdrivingleadtomorehurdlesandrisks.Fortunatelyforsourcing,mistakesdon’tcausedeathorinjury.SourcingBotscanbeadoptedatafasterpaceduetothelowerriskprofileandabsenceofregulatoryconstraints.
ThehardwareproductionconstraintsinDrivingAutomationarealsoanobviousfrictionaleffectonprogress.Tesla’sdifficultiesintheirownsupplychainareevidenceofthisfactor.TheaccelerationofSourcingAutomationwillbemuchfasterasaconsequenceofthelowercostsofinvestmentandlowerrisksofexecution.
K
WhitePaper:SourcingAutomation
5
Speed,Excellenceand
CompetitiveAdvantage
Theprimarychallengesareknowingwhattoprioritizeforsourcing,doingsoswiftly,andapplyingaprocessthatisconsistentlyexcellent.Excellencereliesonmechanismsthatincludenumerousfeatures;somearequitemundanebutservecriticallyimportantroleswhenspeedandautomationarethegoal.Thesefeaturesinclude:
?Datacleansingtechniquesusingoutlierdetection.
?Datatypesafety.
?Inter-lotconsistencyrulesandothermethodstoensurewearereasoningabouttrustworthydata.
?Bidderfeedbackbaseduponappropriateandfairrulestomarshalcompetitivetension.
?Flexiblebiddingtocaptureeconomiesanddiseconomiesofscaleandscope.
?Richscenarioanalysistoexplorecostandnon-costtrade-offssothatParetoefficientoutcomesarefullycharacterizedandcompared.
Thereareotherkeycharacteristicsofsourcingexcellence,buttheyaretoomanytolisthereandarenotthemajorfocusofthispaper.Historically,amajorchallengetoreliablyachievingbestpracticeisthatit’stime-consumingandrequiressmartoptimization-backedsourcingtools.Mostorganizationsdon’thavesufficientresourcesand/ortoolstohelpachievethisstandardandiftheydo,thenonlyasmallnumberofuserscanaccesstherighttoolsandfullyunderstandthestandardsrequired.
ExpectedBenefits
ThenewfieldofSourcingAutomationoffersnumeroussalientbenefits.Themostimportantisthestrategicadvantagesofestablishingreliablebestpracticethat’sfasterthancompetitorsstrugglingwithmanualprocesseswhowillfailtoachievethesamelevelofqualityinfinaloutcomes.
1.SpeedandEfficiency:Automationcanexecutetasksfaster,trackstatusoftasks,andallowforscaleinthevolumeshandled.Newsourcingeventscanbelaunchedinsecondstominutes,andnumbersofsourcingtasksacrossmultipleeventscanberunningsimultaneouslyandatdifferentprogressstages,andthemachinecanmanageallofthatworkload.
K
WhitePaper:SourcingAutomation
6
2.AgilityandResponsiveness:Automationcanprovidecontinuousmonitoringtoseewhentosourcegoodsandservices.Forexample,bymonitoringfuturesandspotmarkets,itispossibletojudgeleadingindicatorsthatsignifytheneedforaction.
3.EnrichedBidding:Thefasterexecutionofpublishedeventscaninstillincreasedcompetitivetensionwhileretainingfinecontroloverquality/costtrade-offs.Also,automatedandintelligentuseof3rd-partydatacaninformperformanceandfeedbackforbiddersinmulti-roundevents.
4.ProcessCompliance:Consistencyisensuredfortasksthatareautomated,therebyenhancingtheoverallsourcingprocess.
5.AuditabilityandTransparency:Automationhelpstocentralizeandgivevisibilitytomanysourcingfunctionsthatmayhaveonceoccurredoffline,includingnewrequests,bidsubmissions,negotiations,andevenawarddecisions.
6.HumanResourceAllocation:Offloadingtedious,repetitiveanddata-intensiveworktointelligentsoftwareagentscangivehumanteammembersa“promotion”ofsorts,freeinguptimetofocusonmorestrategicandcreativeopportunities.Thiscanhelpsourcingleadersnewlyassesstheirlaborcostsandneeds.
Therangeandsignificanceofbenefitspointtowardstheoverallstrategicadvantageofthistechnologyasadistinctcompetitiveadvantage.
“Today’sleadingprocurementorganizationsrecognizethattechnologyandautomationwillcontinuetoimproveallaspectsoftheprocurementoperatingmodel,drivingefficiencyandeffectiveness.”
*Source:KPMGFutureofProcurementReport,2020
K
WhitePaper:SourcingAutomation
7
Wave1-Level4High
Automation
InFigure2below,thekeystepstowardsfullyautonomoussourcingsystemsaresummarized.ItisimportanttonotethatSourcingAutomationforallcategoriesdoesn’trequireallstepstobeautomated.Forexample,SourcingAutomationofRawMaterialsmayonlyrequireadeterministicbiddingmechanismbeapplied,soAItooptimallyconfigurethebiddingrulesandfeedbackisn’tnecessary.SimplercategoriessuchasthisdonotneedtowaitforfullLevel5Automation,insteadLevel4isallthatisneededinsuchacase.
Figure2:ThePathtoLevel5FullAutomation
SourcingAutomationimplementationsdonotrequirealltheadvancedcapabilitiesinLevel5AutonomousSystems.ThemainchallengesforthefirstdeploymentsofSourcingAutomationaretointegratenecessarydatafeedsforautomatedend-to-endexecutionofspendcategoriesthatarepredictableintermsofthesupplierstoinvite,thetiming,andthebiddingmechanismtobeapplied.Thecommercialtermsofsuchimplementationsarenotwithinthescopeofthispaper,butthereturnoninvestmentfromdeploymentsishigh,thetimetocashflowpositivestatusisfast,andtargetedheadcountreductionsfacilitateasimpleandcompellingbusinesscase.
K
WhitePaper:SourcingAutomation
8
MEASURE
GOAL
SourcingAutomationRollout
ThefirstwaveofSourcingAutomationisfocusedonrepetitivebideventsthataremostlabor-intensiveandpredictableintermsofsupplierstoinviteandthebiddingprocesstoapply.Theseareanaturalstartingpointandcanbeincategoriessuchasmaterials,transport,maintenance,consumables,orroutineservices.
TECHNOLOGY
Speed
Minimizetimetoexecuteaneventfrombeginningtoendviafullyautomatedsetup,datacleansingandprocessing,controlofroundsandscenariogeneration.
Autopilot,automatedcleansing,AIbasedconfigurationandAutomatedMechanismDesignensureendtoendspeed.
Awareness
Understandthecategorybeingsourced,thedatabeingcollectedandadviseonpotentialmistakes.
MachineLearning(NLP&ANNs)toclassifyeachbideventandgeneraterecommendations.
Bidder
Biddersneedtobetoldwheremistakesaremade
Cell-leveleditabilitycontrolstopointbiddersto
Direction
andpresentedwithgatingcontrolstoincentivizeaction.
specificcorrectiveactionsthataremandatorybeforeproceeding.
Continuous
Intelligentsystemsshouldalwaysbelearningand
MachineLearningtocontinuouslylearnin
Improvement
improvingsothatperformanceexceedshumanexpertstandards.
supervisedandunsupervisedcontexts.
Intelligent
Givethecontextfromthecategory,automated
Supervisedlearningtotrainsystemstogenerate
Reporting
reportsthatdescribetrade-offsinnon-cost
dimensionsmostrelevanttothatcategory.
scenariosbasedupontaggeddata.
Override
Manualcontroltointervene,stoporadjustaprocess
Fromtheexecutivedashboard,actionable
Controls
manually.
interventionsshouldbeinitiatedwithdetailedcontrolswithinKeelvar’sSaaSapplication.
Oversight
Aviewofprogressacrossmultiplesourcingevents.
Executivedashboardsummarizingprogressofsourcingeventsandstagesofexecution.
Table1:Goals,measuresandsolutionsforLevel4Automation
Itisn’tstrictlynecessarytomonitorunstructurednewsfeeds;secondaryinformationsuchasfuturesmarketscanofferthespeedofupdateyouneedtoactionresponses.So,intelligentsystemscanleveragefastrespondingmarketdatafeedstoinferwhatactionsareneeded.Thenatureofsoftdataisthatitisambiguous;quantitativedatasourcesarepreciseandresponsivetounderlyingevents.Asmarterapproachistoinferwhichmarketsignalsaremosthighlycorrelatedwithsupplychaindisruptionsforagivenorganization.
K
WhitePaper:SourcingAutomation
9
Theautomationdeploymentarchitectureshouldprovideamodularandextensibleapproachtohelpfacilitateachievingallthegoalslistedintheprevioustable.Thescopeofworkisusuallykeptnarrowinthefirstimplementation.Theeasiestapproachistosidesteptheneedforintelligentsensingofwhentosource,bychoosingacategorythatissourcedregularlyat,forexample,weeklyintervals.Implementationisalsoeasierwhenthespendcategoryalwaysrequiresthesamebiddingmechanismanddoesn’trequireintelligentdecisionmakingonthenuancesofadjustingbiddingrulestooptimizeresults.Thispermitsadeterministicflowandacceleratesinitialdeployment.Fromthere,usagecanbebroadenedrapidlyacrosslikeevents.
AutopilotApplications
Automationcanalsobeappliedtohandlethemechanicsofmanagingmultipleroundsofbidding,includingbiddercommunications,bidopening,feedbackgeneration,datacleansing,bidroundclosingandtermination-criteriamonitoring,andactivation.Thisisavitalpieceofinfrastructureforenablingend-to-endSourcingAutomationbecausethemechanicsofmanagingpotentiallymanybidderscanbethemosttime-consumingaspectofsourcing.
Considermulti-roundRFQswherethefollowingsequenceofactivitiesisrequired:
?Startinground1bidding
?Reviewingandrevertingtobidderstosuggestdatacleansing(outliers)
?Calculatingandsendingfeedbacktobidders
?Openingofroundswithmessagestomanageexpectationsforbidders
?Updatedbiddingrulesincludingalterationstominimumbiddecrementsandchangestobiddingrules
?Openingasecondroundofbidding,conductedwithdetailedfeedback
?Messaginglaggardbidderstoconcludetheiractivitiesandsupportingdatacleansing
Thisprocessistedioustoexecutemanuallyandthemorebiddersthereare,themoreoneroustheabovetasksbecomeandalsothemorelikelythatshortcutsaretakenandmistakesaremade.
Furthermore,theslowpaceandfrictioninmanualeventsleadstocurtailmentoftheroundsofbidding,limitingthenumberofinvitedbidders,andthereforetoinevitablelostsavingsopportunities.
K
WhitePaper:SourcingAutomation
10
Autopilotmanagesalloftheseactivitiessmoothlyandataspeedandscalethatistransformativeforbuyingorganizations.
Figure3:Pre-plannedscheduleforautomatedexecution
SourcingRobotics(orBots)referstotheintelligentsystemsthatoperatesourcingeventworkloadsthatareconfiguredtofulfillaspecificgroupoftasks.Abotknowshowtomanageasourcingeventfrombeginningtoendandreliesonsupervisedlearningmechanismswhenhumanuserswishtooverridethebot’spreferredchoiceofaction.
Humanactionsandoverrideswiththebotalsoserveastrainingmechanismsforthebottocontinuouslyimprove.Aswithhumanintelligence,someoftheintelligenceisgeneral(e.g.knowinghowtonotifybiddersofrelevanteventssuchasroundopenings),whereassomeismorecontext-specific(e.g.knowingwhattypeofscenarioisrelevanttogenerateforoceanfreight),andyetmorecanbeinstance-specific(e.g.knowingthatforaspecificbusinessunit,whenvolumesexceedathreshold,splittheitemintotwoparts).
K
WhitePaper:SourcingAutomation
11
MEASURE
GOAL
TheFuture:Level5Fully
AutonomousSystems
Thechallengeofknowingwhentosourceandhowtosourceitoptimally
--giventhespecificdimensionsofthegoodsorserviceinquestion--isanadvancedchallenge.Somesimplercategoriessuchasroutinesourcingeventsfortransportationspotbidding,materials,maintenance,orotherservicesmaybepredictablesothetimingofthesourcingeventisaneasydecision.Othercategoriessuchasglobaltransportorpartsmaydependuponobservationsofbenchmarkprices,spotmarkets,volumechanges,andcontractexpirationdates.ThelogicfortimingreliesuponStochasticModellingtechniquestogeneratepredictiveanalyticsandrequirescouplingwithotherdatastreamsregardingcontractdurationsanddemandpatternsforeffectivemodelling.
Autonomoussystemsshouldrespondrapidlyastriggeringeventsunfold.Forexample,ifthereisanaturaldisasterinsomepartoftheworld,thiswillimpactcommodityprices,andreactivemeasuresshouldbeinitiatedimmediatelytosourcealternativesupplylinesshouldsupplyuncertaintybecomeanissue.Thisactionableintelligence,however,requireshigherlevelsofsophistication,andtheexecutionrequiresmoresophisticatedAlgorithmicMechanismDesigntotrulyoptimizethego-to-marketstrategy.
Thenot-too-distantfutureofintelligentsourcingautomationwillseewideradoptionofLevel4,andthenultimatelyincludethetechnologythatcandeliverLevel5autonomyattheoptionoftheuser.
TECHNOLOGY
Agility
Monitoringofalarmstodetectwhenmarketconditionsshifttotriggerasourcingevent,giveninventorylevelsandriskattitude.
IntegrationservicehooksintodatafeedsandERPsystemsnecessarytotriggeraction.
Demand
Machinescanstatisticallyinferwithgreater
StochasticModellingforpredictiveanalyticsto
Prediction
precisionandspeedwhatthefutureprobabilisticevolutionofdemandwillbe.Thisiscrucialdataforsuppliersthatneedtocommunicateeconomiesofscaleforpricing.
estimatefuturedemand(andseasonalityifappropriate).Thismayinvolveeitherregressiontechniquesand/orfittingprobabilisticmodelstoinferfuturedemand.
Intelligent
Decisionsonwhotoinvitecanbecriticalto
RecommenderSystemsthatapplysupervised
Invitations
maximisingcompetitionwhilstalsopreventinglowerqualitysuppliersfromcreatingnoiseinabidevent.
learningapproaches.
Smart
Biddingrules,bidderfeedback,flexiblebiddingand
AlgorithmicMechanismDesign
Mechanisms
automatedbundlegenerationwithsmartAskpricingdrivesbetterandfasterresults.
Table2:Goals,measuresandsolutionsforLevel5Automation
K
WhitePaper:SourcingAutomation
12
IntelligentAutomationEnhancingHumanWork
AIistrumpingexperthumanperformanceinmanydomains.Forexample,pokerisacomplexgameandfewpeopleevermasterit,andthosethatdoinvariablyrequiremanyyearsofpractice.AI-poweredbots,however,havenowmasteredpokerandeventheworldchampioncannotbeatabotthathaslearnedhowtomasterthegame-theoreticanalysisandcalculationofmixedstrategyequilibriatooptimizepayoffs.
Furthermore,AIisanti-fragileandthuswillcontinuouslyimprove,whilehumansneedcontinualpracticetomaintainstandards.AI’scontinuousimprovementiseffortlessasthetrainingdataisever-increasinganditslearningisautomatic.
ThesoberingfactisthatAIisdefeatingthebesthumanexpertsintaskswheretheboundariesandconstraintsondecisionmakingarewell-definedclosedsystems.ItwouldbeamistaketoassumethatAIwon’tbecompetitiveinthetasksassociatedwithtacticalsourcingandthenultimatelyovertakehumansinthisrole.Oncetheboundariesofdecision-makingarecommunicated,thenthegame-theoreticreasoningforoptimizingthemechanismforsourcinggoodsandservicesbecomesjustanothercomplexbuttractablecalculationforArtificialIntelligence.
However,thisneednotbeanegativeforthehumanbuyerinsourcing.Instead,theAIinthesesourcingbotswillfreeupthehuman’stimetomoveawayfromtryingtojuggletedious,repetitiveandpredictabletaskworktofocusonareaswheremachinescannotexceedus,suchasstrategicplanning,empathyandrelationshipdevelopment,andcreativethinkingasafewexamples.Thismakesastrongcaseforcombininghumanswithmachinestoadvancesourcingtodelivernet-newvaluegains.
K
WhitePaper:SourcingAutomation
13
Figure5:BotscanAutopilotsourcingeventsinamannerandscalethatensureconsistenthighquality.
Summary
AsStrategicSourcingcontinuestonavigatemorecomplexity,disruption,andneedformodernization,thereisrarelysufficienttime,resources,andsystemsinplacetoexecuteprocessestoveryhighquality,letaloneexcellence.AIcannowdeliverautomatedsourcingtobest-practicestandardswithconstantavailabilityandunmatchedagility.
AboutTheAuthors
DavidDevlin,ChiefTechnologyOfficer,Keelvar.DavidisacomputerscientistandcametoKeelvarfromtheCorkConstraintComputationCentre.HisresearchfocusedonOptimizationandMachineLearning.
AlanHolland,PhD.CEO,Keelvar.AlanhasaPhDinComputerSciencespecialisinginArtificialIntelligence.Hispost-doctoralresearchfocusedonAlgorithmicMechanismDesign,GameTheoryandOptimizationwithpublicationsinIJCAI,AAAIandECAI.HewasbasedintheInsightCentreinUniversityCollegeCorkandthecourseleaderforataughtMScinIntelligentSystems.
BarryHurley,PhD.PrincipalSoftwareEngineer.BarryhasaPhDinComputerScienceandhisdissertationfocusedonMachineLearningtechniquesforoptimizingperformanceincombinatorialoptimizationproblems.AtKeelvarheleadstheIntelligentSystemsteam.
K
WhitePaper:SourcingAutomation
14
AboutKeelvar
Foundedin2012,Keelvarismovingprocurementforwardwithourbest-in-breedSaaSsoftwareforintelligentsourcingoptimizationandautomation,designedforeasyadoption,scale,andproductivity.Ourcustomersareglobal,blue-chipcorporationsandmid-sizedcompaniesusingoursolutionsacrosstransportation,directmaterials,indirectgoodsandservices,andpackagingcategories.
Contactusforpricingandademo:
KKeeeellvvaarr..ccoomm
WHITEPAPER
Sourcing
Automation
IntelligentSourcingAutomationisanewcategoryof
softwarethatleveragesintelligentsystemstoautomate
complexhumanreasoningthatexceedsexpertstandards.It
isconstructedusingamultiplicityofAItechniquestoencode
intelligentreasoningatvariousstagesinasourcingevent,
fromthedesignofasourcingeventthroughtotheconclusion
ofanawardingstrategy.Thiswhitepaperelaborateson
keyrecenttechnologicaladvancesthatpermitthisnew
intelligentautomationandthepathtowiderdeploymentof
SourcingAutomation.
Originalpublishdate2018;updatedJanuary2022
K
2
Introduction
SourcingAutomationisanewcategoryofsoftwarethatleveragesintelligentsystemstoautomatecomplexhumanreasoningthatexceedsexpertstandards.ItisconstructedusingamultiplicityofAItechniquestoencodeintelligentreasoningatvariousstagesinasourcingevent,fromthedesignofasourcingeventthroughtotheconclusionofanawardingstrategy.ThisacademicwhitepaperelaboratesonthekeyrecenttechnologicaladvancesthatpermitthisnewintelligentautomationandthepathtowiderdeploymentofSourcing
Automation.
IntelligentSystemsandArtificialIntelligence(AI)
AIisdeliveringmajoradvancesinmanyfields,frommedicaldiagnosticstoalgorithmictradingandpokerbots.IntelligentSystemsincludeAIandothertechniquessuchasstatisticalinferenceandprobabilisticreasoning.WhileAIplaysavitalroleindeliveringintelligentsystems,analystsoftenunderestimatethecollectivepowerofcomplementarytechniquestodeliversolutionstoautomateprocesses.
Keelvartakesapragmaticviewwhenselectingthemostappropriatetechnologicalsolutionforaspecifictaskinthesourcingprocessthatrequiresautomation.Forexample,outlierdetectionrequiresstatisticalinference,whereascategoryclassificationrequiresNaturalLanguageProcessingandMachineLearning.Whencombined,thesetechniquesformanintelligentsystemthatdrivesautomationacrossnumerousstepsthatthemselvesareindependentlyautomatedindifferentways.
StrategicSourcingprocessesaretooslow,fewpeopleunderstandbestpractice,andevenfewerhavesufficienttimeoraccesstotherighttoolstotrulyattainhighestquality.Suppliersareevenmorefrustratedbypoorsystemsandthequalityofthevariousprocessestheyencounter.SourcingAutomationaddressesthesefailingsbyleveragingAItoautomatebestpracticeandprovidingreliableexcellenceinanefficientmanner.
3
SourcingAutomation
Automationof‘downstream’activitiesinprocurementhasbeenacceleratinginrecentyears.RoboticProcessAutomation(RPA)builtonsimplerepetitiveroutinescandrivesavings,speed,andreliability.However,automationofcomplexsourcingactivitiesdeliversgreaterstrategicbenefits.
Advantagesintermsofimprovedmechanismsformanagingcompetitivebidprocesses,supplierdiscovery,innovationsupport,improvedspeedof
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 119安全教育課件
- 護理操作的并發(fā)癥
- 6丶7的知識教學(xué)課件
- 人教版數(shù)學(xué)六年級下冊第二單元百分數(shù)(二)測試題含答案
- 安徽省亳州市渦陽縣重點達標(biāo)名校2025年初三下學(xué)期期中質(zhì)量抽測化學(xué)試題試卷含解析
- 遼寧政法職業(yè)學(xué)院《建筑設(shè)計實訓(xùn)(二)》2023-2024學(xué)年第二學(xué)期期末試卷
- 海南工商職業(yè)學(xué)院《工程管理專業(yè)英語》2023-2024學(xué)年第二學(xué)期期末試卷
- 安徽師范大學(xué)皖江學(xué)院《經(jīng)濟英語》2023-2024學(xué)年第一學(xué)期期末試卷
- 度環(huán)保題材紀(jì)錄片制作合同
- 2025年浙江省寧波興寧中學(xué)初三暑期階段性考試化學(xué)試題含解析
- 《人工智能導(dǎo)論》(第2版)高職全套教學(xué)課件
- 大連醫(yī)科大學(xué)課件模板
- AQ 1064-2008 煤礦用防爆柴油機無軌膠輪車安全使用規(guī)范(正式版)
- 職工飲酒責(zé)任書
- 樣機試用合同模板
- 物業(yè)管理費收費技巧培訓(xùn)
- 服裝設(shè)計部門績效考核方案
- 2024年上海市八年級語文下學(xué)期期中考試復(fù)習(xí)(課內(nèi)古詩文+課外文言文)
- 清明時節(jié)的中醫(yī)養(yǎng)生
- 霍蘭德興趣島課件
- 開封大學(xué)單招職業(yè)技能測試參考試題庫(含答案)
評論
0/150
提交評論