版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,四棱錐的底面為平行四邊形,,則三棱錐與三棱錐的體積比為()A. B. C. D.2.若三個實數(shù)a,b,c成等比數(shù)列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.43.已知均為實數(shù),則“”是“構(gòu)成等比數(shù)列”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件4.不等式x+5(x-1)A.[-3,1C.[125.甲、乙兩名運動員分別進行了5次射擊訓練,成績?nèi)缦拢杭祝?,7,8,8,1;乙:8,9,9,9,1.若甲、乙兩名運動員的平均成績分別用,表示,方差分別用,表示,則()A., B.,C., D.,6.已知函數(shù)與的圖象上存在關(guān)于軸對稱的點,則實數(shù)的取值范圍是().A. B. C. D.7.已知,,,則()A. B. C. D.8.函數(shù)的最大值為()A.1 B.2 C.3 D.59.將函數(shù)的圖像左移個單位,則所得到的圖象的解析式為A. B.C. D.10.圓上的一點到直線的最大距離為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角為直角,線段上的點滿足,若對于給定的是唯一確定的,則_______.12.若、分別是方程的兩個根,則______.13.如圖,長方體中,,,,與相交于點,則點的坐標為______________.14.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.15.設(shè),,,則,,從小到大排列為______16.已知,且,則的值是_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設(shè)等差數(shù)列中,.(1)求數(shù)列的通項公式;(2)若等比數(shù)列滿足,求數(shù)列的前項和.18.如圖,已知四棱錐,底面是邊長為的菱形,,側(cè)面為正三角形,側(cè)面底面,為側(cè)棱的中點,為線段的中點(Ⅰ)求證:平面;(Ⅱ)求證:;(Ⅲ)求三棱錐的體積19.已知,,,,求的值.20.如下圖,長方體ABCD-A1B1C1D1中,(1)當點E在AB上移動時,三棱錐D-D(2)當點E在AB上移動時,是否始終有D121.某校200名學生的數(shù)學期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是.(1)求圖中m的值;(2)根據(jù)頻率分布直方圖,估計這200名學生的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表)和中位數(shù)(四舍五入取整數(shù));(3)若這200名學生的數(shù)學成績中,某些分數(shù)段的人數(shù)x與英語成績相應分數(shù)段的人數(shù)y之比如下表所示,求英語成績在的人數(shù).分數(shù)段[70,80)[80,90)[90,100)[100,110)[110,120)x:y1:22:16:51:21:1
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
先由題意,得到,推出,再由推出,由,進而可得出結(jié)果.【詳解】因為底面為平行四邊形,所以,所以,因為,所以,所以,所以,因此.故選C【點睛】本題主要考查棱錐體積之比,熟記棱錐的體積公式,以及等體積法的應用即可,屬于??碱}型.2、C【解析】
由實數(shù)a,b,c成等比數(shù)列,得b2【詳解】由實數(shù)a,b,c成等比數(shù)列,得b2所以b=±2.故選C.【點睛】本題主要考查了等比數(shù)列的基本性質(zhì),屬于基礎(chǔ)題.3、A【解析】解析:若構(gòu)成等比數(shù)列,則,即是必要條件;但時,不一定有成等比數(shù)列,如,即是不充分條件.應選答案A.4、D【解析】試題分析:x+5(x-1)2≥2?x+5≥2(x-1)2且x≠1考點:分式不等式解法5、D【解析】
分別計算出他們的平均數(shù)和方差,比較即得解.【詳解】由題意可得,,,.故,.故選D【點睛】本題主要考查平均數(shù)和方差的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.6、A【解析】若函數(shù)f(x)=a﹣x2(1≤x≤2)與g(x)=2x+1的圖象上存在關(guān)于x軸對稱的點,則方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的圖象是開口朝上,且以直線x=1為對稱軸的拋物線,故當x=1時,g(x)取最小值﹣2,當x=2時,函數(shù)取最大值﹣1,故a∈[﹣2,﹣1],故選:A.點睛:圖像上存在關(guān)于軸對稱的點,即方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,轉(zhuǎn)化為方程有解求參的問題,變量分離,畫出函數(shù)圖像,使得函數(shù)圖像和常函數(shù)圖像有交點即可;這是解決方程有解,圖像有交點,函數(shù)有零點的常見方法。7、C【解析】
利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性即可求解.【詳解】為減函數(shù),,為增函數(shù),,為增函數(shù),,所以,故.故選:C【點睛】本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性比較指數(shù)式、對數(shù)式的大小,屬于基礎(chǔ)題.8、D【解析】
由可求得所處的范圍,進而得到函數(shù)最大值.【詳解】的最大值為故選:【點睛】本題考查函數(shù)最值的求解,關(guān)鍵是明確余弦型函數(shù)的值域,屬于基礎(chǔ)題.9、C【解析】
由三角函數(shù)的圖象變換,將函數(shù)的圖像左移個單位,得到,即可得到函數(shù)的解析式.【詳解】由題意,將函數(shù)的圖像左移個單位,可得的圖象,所以得到的函數(shù)的解析式為,故選C.【點睛】本題主要考查了三角函數(shù)的圖象變換,其中熟記三角函數(shù)的圖象變換的規(guī)則是解答本題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.10、D【解析】
先求出圓心到直線距離,再加上圓的半徑,就是圓上一點到直線的最大距離.【詳解】圓心(2,1)到直線的距離是,所以圓上一點到直線的最大距離為,故選D.【點睛】本題主要考查圓上一點到直線距離最值的求法,以及點到直線的距離公式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè),根據(jù)已知先求出x的值,再求的值.【詳解】設(shè),則.依題意,若對于給定的是唯一的確定的,函數(shù)在(1,)是增函數(shù),在(,+)是減函數(shù),所以,此時,.故答案為【點睛】本題主要考查對勾函數(shù)的圖像和性質(zhì),考查差角的正切的計算和同角的三角函數(shù)的關(guān)系,意在考查學生對這些知識的理解掌握水平和分析推理能力.12、【解析】
利用韋達定理可求出和的值,然后利用兩角和的正切公式可計算出的值.【詳解】由韋達定理得,,因此,.故答案為:.【點睛】本題考查利用兩角和的正切公式求值,同時也考查了一元二次方程根與系數(shù)的關(guān)系,考查計算能力,屬于基礎(chǔ)題.13、【解析】
易知是的中點,求出的坐標,根據(jù)中點坐標公式求解.【詳解】可知,,由中點坐標公式得的坐標公式,即【點睛】本題考查空間直角坐標系和中點坐標公式,空間直角坐標的讀取是易錯點.14、0.9【解析】
先計算,再計算【詳解】故答案為0.9【點睛】本題考查了互斥事件的概率計算,屬于基礎(chǔ)題型.15、【解析】
首先利用輔助角公式,半角公式,誘導公式分別求出,,的值,然后結(jié)合正弦函數(shù)的單調(diào)性對,,排序即可.【詳解】由題知,,,因為正弦函數(shù)在上單調(diào)遞增,所以.故答案為:.【點睛】本題考查了輔助角公式,半角公式,誘導公式,正弦函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.16、【解析】
計算出的值,然后利用誘導公式可求得的值.【詳解】,,則,因此,.故答案為:.【點睛】本題考查利用誘導公式求值,同時也考查了同角三角函數(shù)基本關(guān)系的應用,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求出公差,由公式得通項公式;(2)由(1)求出,計算公比,再由等比數(shù)列前項和公式得和.【詳解】(1)在等差數(shù)列中,,故設(shè)的公差為,則,即,所以,所以.(2)設(shè)數(shù)列的公比為,則,所以.【點睛】本題考查等差數(shù)列與等比數(shù)列的基本量法.求出數(shù)列的首項和公差(或公比),則數(shù)列的通項公式與前項和隨之而定.18、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)【解析】
(Ⅰ)連接,交于點;根據(jù)三角形中位線可證得;由線面平行判定定理可證得結(jié)論;(Ⅱ)由等腰三角形三線合一可知;由面面垂直的性質(zhì)可知平面;根據(jù)線面垂直性質(zhì)可證得結(jié)論;(Ⅲ)利用體積橋的方式將所求三棱錐體積轉(zhuǎn)化為;根據(jù)已知長度和角度關(guān)系分別求得四邊形面積和高,代入得到結(jié)果.【詳解】(Ⅰ)證明:連接,交于點四邊形為菱形為中點又為中點平面,平面平面(Ⅱ)為正三角形,為中點平面平面,平面平面,平面平面,又平面(Ⅲ)為中點又,,由(Ⅱ)知,【點睛】本題考查立體幾何中線面平行、線線垂直關(guān)系的證明、三棱錐體積的求解問題;涉及到線面平行判定定理、面面垂直性質(zhì)定理和判定定理的應用、體積橋的方式求解三棱錐體積等知識,屬于常考題型.19、【解析】
根據(jù)角的范圍結(jié)合條件可求出,的值,然后求出的值,再由二倍角公式可求解.【詳解】由,,得.又,則.由,,得.所以又所以【點睛】本題考查兩角和與差的三角函數(shù)公式和同角三角函數(shù)關(guān)系以及二倍角公式,考察角變換的應用,屬于中檔題.20、(1)13【解析】(I)三棱錐D-D∵∴V(II)當點E在AB上移動時,始終有D1證明:連接AD1,∵四邊形∴A1∵AE⊥平面ADD1A1,∴A1又AB∩AD1=A,AB?∴A1D⊥平面又D1E?平面∴D121、(1)(2)平均分為,中位數(shù)為(3)140人【解析】
(1)由題得,解方程即得解;(2)利用頻率分布直方圖中平均數(shù)和中位數(shù)的計算公式估計這200名學生的平均分和中位數(shù);(3)分別計算每一段的人數(shù)即得解.【詳解】(1)由,解得.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州大學《ERP軟件原理與應用》2023-2024學年第一學期期末試卷
- 貴陽學院《有機化學I1》2023-2024學年第一學期期末試卷
- 貴陽信息科技學院《高級英語視聽說》2023-2024學年第一學期期末試卷
- 廣州珠江職業(yè)技術(shù)學院《英語聽說二》2023-2024學年第一學期期末試卷
- 廣州幼兒師范高等??茖W?!兜乩碚n件制作》2023-2024學年第一學期期末試卷
- 2025重慶市安全員C證考試(專職安全員)題庫附答案
- 廣州鐵路職業(yè)技術(shù)學院《數(shù)量經(jīng)濟學》2023-2024學年第一學期期末試卷
- 2025湖南建筑安全員《A證》考試題庫
- 2025安徽省建筑安全員-B證考試題庫附答案
- 2025湖南省安全員A證考試題庫及答案
- 2023-2024學年滬科版九年級上學期物理期末模擬試卷(含答案)
- 測繪生產(chǎn)成本費用定額2022
- 卷揚機專項施工方案
- 對外投資合作國別(地區(qū))指南 -泰國
- 2023年-2024年崗位安全教育培訓試題及答案通用
- 口腔修復學(全套課件290p)課件
- 小學生心理問題的表現(xiàn)及應對措施【全國一等獎】
- 小學生科普人工智能
- 初中學段勞動任務清單(七到九年級)
- 退耕還林監(jiān)理規(guī)劃
- GB/T 1335.2-2008服裝號型女子
評論
0/150
提交評論