版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.《萊因德紙草書》是世界上最古老的數(shù)學(xué)著作之一,書中有一道這樣的題目:把100個(gè)面包分給五個(gè)人,使每個(gè)人所得成等差數(shù)列,最大的三份之和的是最小的兩份之和,則最小的一份的量是()A. B. C. D.2.已知點(diǎn)在正所確定的平面上,且滿足,則的面積與的面積之比為()A. B. C. D.3.若非零實(shí)數(shù)滿足,則下列不等式成立的是()A. B. C. D.4.若線性方程組的增廣矩陣是5b1102bA.1 B.2 C.3 D.45.等差數(shù)列的前項(xiàng)和為,若,則()A.27 B.36 C.45 D.546.已知,,是三條不同的直線,,是兩個(gè)不同的平面,則下列命題正確的是A.若,,,,,則B.若,,,,則C.若,,,,,則D.若,,,則7.函數(shù),的值域是()A. B. C. D.8.長方體共頂點(diǎn)的三個(gè)相鄰面面積分別為,這個(gè)長方體的頂點(diǎn)在同一個(gè)球面上,則這個(gè)球的表面積為()A. B. C. D.9.在△ABC中,若asinA+bsinB<csinC,則△ABC是()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.都有可能10.用3種不同顏色給2個(gè)矩形隨機(jī)涂色,每個(gè)矩形涂且只涂種顏色,則2個(gè)矩形顏色不同的概率為()A.13 B.12 C.2二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,,分別為的中線和角平分線,點(diǎn)P是與的交點(diǎn),若,,則的面積為______.12.若存在實(shí)數(shù),使不等式成立,則的取值范圍是_______________.13.在等比數(shù)列中,,的值為________14._________.15.已知為等差數(shù)列,,,,則______.16.已知,函數(shù)的最小值為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.為了了解居民的用電情況,某地供電局抽查了該市若干戶居民月均用電量(單位:),并將樣本數(shù)據(jù)分組為,,,,,,,其頻率分布直方圖如圖所示.(1)若樣本中月均用電量在的居民有戶,求樣本容量;(2)求月均用電量的中位數(shù);(3)在月均用電量為,,,的四組居民中,用分層隨機(jī)抽樣法抽取戶居民,則月均用電量在的居民應(yīng)抽取多少戶?18.在中,角所對的邊分別為,且.(1)求邊長;(2)若的面積為,求邊長.19.如圖,在三棱錐中,底面ABC,D是PC的中點(diǎn),已知,,,,求:(1)三棱錐的體積;(2)異面直線BC與AD所成的角的余弦值大小.20.在中,已知,,且AC邊的中點(diǎn)M在y軸上,BC邊的中點(diǎn)N在x軸上,求:頂點(diǎn)C的坐標(biāo);
直線MN的方程.21.如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=1.E為PD的中點(diǎn),點(diǎn)F在PC上,且.(Ⅰ)求證:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)設(shè)點(diǎn)G在PB上,且.判斷直線AG是否在平面AEF內(nèi),說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
由題意可得中間部分的為20個(gè)面包,設(shè)最小的一份為,公差為,可得到和的方程,即可求解.【詳解】由題意可得中間的那份為20個(gè)面包,設(shè)最小的一份為,公差為,由題意可得,解得,故選D.【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式及其應(yīng)用,其中根據(jù)題意設(shè)最小的一份為,公差為,列出關(guān)于和的方程是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、C【解析】
根據(jù)向量滿足的條件確定出P點(diǎn)的位置,再根據(jù)三角形有相同的底邊,確定高的比即可求出結(jié)果.【詳解】因?yàn)?,所以,即點(diǎn)在邊上,且,所以點(diǎn)到的距離等于點(diǎn)到距離的,故的面積與的面積之比為.選C.【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,三角形的面積,屬于中檔題.3、C【解析】
對每一個(gè)不等式逐一分析判斷得解.【詳解】A,不一定小于0,所以該選項(xiàng)不一定成立;B,如果a<0,b<0時(shí),不成立,所以該選項(xiàng)不一定成立;C,,所以,所以該不等式成立;D,不一定小于0,所以該選項(xiàng)不一定成立.故選:C【點(diǎn)睛】本題主要考查不等式性質(zhì)和比較法比較實(shí)數(shù)的大小,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.4、C【解析】
由題意得5×3421+【詳解】由題意得5×3421+解得b1則b2【點(diǎn)睛】本題主要考查了線性方程組的解法,以及增廣矩陣的概念,考查運(yùn)算能力,屬于中檔題.5、B【解析】
利用等差數(shù)列的性質(zhì)進(jìn)行化簡,由此求得的值.【詳解】依題意,所以,故選B.【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),考查等差數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.6、D【解析】
逐一分析選項(xiàng),得到答案.【詳解】A.根據(jù)條件可知,若,不能推出;B.若,就不能推出;C.條件中沒有,所以不能推出;D.因?yàn)?,,所以,因?yàn)?,所以.【點(diǎn)睛】本題考查了面面平行的判斷,屬于基礎(chǔ)題型,需要具有空間想象能力,以及邏輯推理能力.7、A【解析】
由的范圍求出的范圍,結(jié)合余弦函數(shù)的性質(zhì)即可求出函數(shù)的值域.【詳解】∵,∴,∴當(dāng),即時(shí),函數(shù)取最大值1,當(dāng)即時(shí),函數(shù)取最小值,即函數(shù)的值域?yàn)椋蔬xA.【點(diǎn)睛】本題主要考查三角函數(shù)在給定區(qū)間內(nèi)求函數(shù)的值域問題,通過自變量的范圍求出整體的范圍是解題的關(guān)鍵,屬基礎(chǔ)題.8、A【解析】
設(shè)長方體的棱長為,球的半徑為,根據(jù)題意有,再根據(jù)球的直徑是長方體的體對角線求解.【詳解】設(shè)長方體的棱長為,球的半徑為,根據(jù)題意,,解得,所以,所以外接球的表面積,故選:A【點(diǎn)睛】本題主要考查了球的組合體問題,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.9、A【解析】
由正弦定理化已知條件為邊的關(guān)系,然后由余弦定理可判斷角的大?。驹斀狻俊遖sinA+bsinB<csinC,∴,∴,∴為鈍角.故選A.【點(diǎn)睛】本題考查正弦定理與余弦定理,考查三角形形狀的判斷,屬于基礎(chǔ)題.10、C【解析】
由古典概型及概率計(jì)算公式得2個(gè)矩形顏色不同的概率為69【詳解】用3種不同顏色給2個(gè)矩形隨機(jī)涂色,每個(gè)矩形涂且只涂1種顏色,共32則2個(gè)矩形顏色不同共A3即2個(gè)矩形顏色不同的概率為69故選:C.【點(diǎn)睛】本題考查了古典概型及概率計(jì)算公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè),,求點(diǎn)的坐標(biāo),運(yùn)用換元法,求直線方程,再解出交點(diǎn)的坐標(biāo),再利用向量數(shù)量積運(yùn)算求出,最后結(jié)合三角形面積公式求解即可.【詳解】解:由,可設(shè),,則,設(shè),則,直線的方程為,直線的方程為,聯(lián)立直線、方程解得,則,,可得,解得:,即,即,所以,故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,重點(diǎn)考查了兩直線的交點(diǎn)坐標(biāo)及三角形面積公式,屬中檔題.12、;【解析】
不等式轉(zhuǎn)化為,由于存在,使不等式成立,因此只要求得的最小值即可.【詳解】由題意存在,使得不等式成立,當(dāng)時(shí),,其最小值為,∴.故答案為.【點(diǎn)睛】本題考查不等式能成立問題,解題關(guān)鍵是把問題轉(zhuǎn)化為求函數(shù)的最值.不等式能成立與不等式恒成立問題的轉(zhuǎn)化區(qū)別:在定義域上,不等式恒成立,則,不等式能成立,則,不等式恒成立,則,不等式能成立,則.轉(zhuǎn)化時(shí)要注意是求最大值還是求最小值.13、【解析】
根據(jù)等比數(shù)列的性質(zhì),可得,即可求解.【詳解】由題意,根據(jù)等比數(shù)列的性質(zhì),可得,解得.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì)的應(yīng)用,其中解答熟記等比數(shù)列的性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
根據(jù)誘導(dǎo)公式和特殊角的三角函數(shù)值可計(jì)算出結(jié)果.【詳解】由題意可得,原式.故答案為.【點(diǎn)睛】本題考查誘導(dǎo)公式和特殊三角函數(shù)值的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
由等差數(shù)列的前項(xiàng)和公式,代入計(jì)算即可.【詳解】已知為等差數(shù)列,且,,所以,解得或(舍)故答案為【點(diǎn)睛】本題考查了等差數(shù)列前項(xiàng)和公式的應(yīng)用,屬于基礎(chǔ)題.16、5【解析】
變形后利用基本不等式可得最小值.【詳解】∵,∴4x-5>0,∴當(dāng)且僅當(dāng)時(shí),取等號,即時(shí),有最小值5【點(diǎn)睛】本題考查利用基本不等式求最值,湊出可利用基本不等式的形式是解決問題的關(guān)鍵,使用基本不等式時(shí)要注意“一正二定三相等”的法則.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)200(2)224(3)4戶【解析】
(1)因?yàn)?所以月均用電量在的頻率為,即可求得答案;(2)因?yàn)?設(shè)中位數(shù)為,,即可求得答案;(3)月均用電量為,,,的頻率分別為,即可求得答案.【詳解】(1),得.月均用電量在的頻率為.設(shè)樣本容量為N,則,.(2),月均用電量的中位數(shù)在內(nèi).設(shè)中位數(shù)為,,解得,即中位數(shù)為.(3)月均用電量為,,,的頻率分別為應(yīng)從月均用電量在的用戶中抽取(戶)【點(diǎn)睛】本題考查了用樣本估計(jì)總體的相關(guān)計(jì)算,解題關(guān)鍵是掌握分層抽樣的計(jì)算方法和樣本容量,中位數(shù)定義,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.18、(1);(2).【解析】試題分析:本題主要考查正弦定理、余弦定理、特殊角的三角函數(shù)值、三角形面積公式等基礎(chǔ)知識,同時(shí)考查考生的分析問題解決問題的能力和運(yùn)算求解能力.第一問,利用正弦定理將邊換成角,消去,解出角C,再利用解出邊b的長;第二問,利用三角形面積公式,可直接解出a邊的值,再利用余弦定理解出邊c的長.試題解析:(Ⅰ)由正弦定理得,又,所以,.因?yàn)?,所以.?分(Ⅱ)因?yàn)椋?,所以.?jù)余弦定理可得,所以.…12分考點(diǎn):正弦定理、余弦定理、特殊角的三角函數(shù)值、三角形面積公式.19、(1),(2)【解析】
(1)先求出,然后由底面ABC得,即可算出答案(2)取的中點(diǎn),可得是異面直線BC與AD所成的角(或其補(bǔ)角),然后在中,用余弦定理即可算出【詳解】(1)因?yàn)?,,所以因?yàn)榈酌鍭BC,所以(2)如圖,取的中點(diǎn),連接,則所以是異面直線BC與AD所成的角(或其補(bǔ)角)在中,所以由余弦定理得所以異面直線BC與AD所成的角的余弦值大小為【點(diǎn)睛】求異面直線所成的角是將直線平移轉(zhuǎn)化為相交直線所成的角,要注意異面直線所成角的范圍是.20、(1);(2).【解析】試題分析:(1)邊AC的中點(diǎn)M在y軸上,由中點(diǎn)公式得,A,C兩點(diǎn)的橫坐標(biāo)和的平均數(shù)為1,同理,B,C兩點(diǎn)的縱坐標(biāo)和的平均數(shù)為1.構(gòu)造方程易得C點(diǎn)的坐標(biāo).(2)根據(jù)C點(diǎn)的坐標(biāo),結(jié)合中點(diǎn)公式,我們可求出M,N兩點(diǎn)的坐標(biāo),代入兩點(diǎn)式即可求出直線MN的方程.解:(1)設(shè)點(diǎn)C(x,y),∵邊AC的中點(diǎn)M在y軸上得=1,∵邊BC的中點(diǎn)N在x軸上得=1,解得x=﹣5,y=﹣2.故所求點(diǎn)C的坐標(biāo)是(﹣5,﹣2).(2)點(diǎn)M的坐標(biāo)是(1,﹣),點(diǎn)N的坐標(biāo)是(1,1),直線MN的方程是=,即5x﹣2y﹣5=1.點(diǎn)評:在求直線方程時(shí),應(yīng)先選擇適當(dāng)?shù)闹本€方程的形式,并注意各種形式的適用條件,用斜截式及點(diǎn)斜式時(shí),直線的斜率必須存在,而兩點(diǎn)式不能表示與坐標(biāo)軸垂直的直線,截距式不能表示與坐標(biāo)軸垂直或經(jīng)過原點(diǎn)的直線,故在解題時(shí),若采用截距式,應(yīng)注意分類討論,判斷截距是否為零;若采用點(diǎn)斜式,應(yīng)先考慮斜率不存在的情況.21、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意利用線面垂直的判定定理即可證得題中的結(jié)論;(Ⅱ)建立空間直角坐標(biāo)系,結(jié)合兩個(gè)半平面的法向量即可求得二面角F-AE-P的余弦值;(Ⅲ)首先求得點(diǎn)G的坐標(biāo),然后結(jié)合平面的法向量和直線AG的方向向量可判斷直線是否在平面內(nèi).【詳解】(Ⅰ)由于PA⊥平面ABCD,CD平面ABCD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度快餐連鎖加盟合同協(xié)議書3篇
- 西南石油大學(xué)《體育課程標(biāo)準(zhǔn)及教學(xué)研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年智慧交通管理系統(tǒng)經(jīng)濟(jì)合同2篇
- 武漢鐵路橋梁職業(yè)學(xué)院《影視特效處理(AE)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度酒店行業(yè)勞動合同與客戶信息保密協(xié)議3篇
- 2025年度城市基礎(chǔ)設(shè)施建設(shè)PPP合作合同范本3篇
- 2025年屋頂光伏發(fā)電系統(tǒng)組件供應(yīng)合同2篇
- 2024房產(chǎn)中介服務(wù)合同
- 買賣雙方商業(yè)合作詳細(xì)合同范本版B版
- 蘇州工藝美術(shù)職業(yè)技術(shù)學(xué)院《當(dāng)代西方倫理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 公共交通乘客投訴管理制度
- 不銹鋼伸縮縫安裝施工合同
- 水土保持監(jiān)理總結(jié)報(bào)告
- Android移動開發(fā)基礎(chǔ)案例教程(第2版)完整全套教學(xué)課件
- 醫(yī)保DRGDIP付費(fèi)基礎(chǔ)知識醫(yī)院內(nèi)培訓(xùn)課件
- 專題12 工藝流程綜合題- 三年(2022-2024)高考化學(xué)真題分類匯編(全國版)
- DB32T-經(jīng)成人中心靜脈通路裝置采血技術(shù)規(guī)范
- 【高空拋物侵權(quán)責(zé)任規(guī)定存在的問題及優(yōu)化建議7100字(論文)】
- TDALN 033-2024 學(xué)生飲用奶安全規(guī)范入校管理標(biāo)準(zhǔn)
- 物流無人機(jī)垂直起降場選址與建設(shè)規(guī)范
- 冷庫存儲合同協(xié)議書范本
評論
0/150
提交評論