高中數(shù)學(xué)學(xué)業(yè)水知識(shí)點(diǎn)總結(jié)3篇_第1頁(yè)
高中數(shù)學(xué)學(xué)業(yè)水知識(shí)點(diǎn)總結(jié)3篇_第2頁(yè)
高中數(shù)學(xué)學(xué)業(yè)水知識(shí)點(diǎn)總結(jié)3篇_第3頁(yè)
高中數(shù)學(xué)學(xué)業(yè)水知識(shí)點(diǎn)總結(jié)3篇_第4頁(yè)
高中數(shù)學(xué)學(xué)業(yè)水知識(shí)點(diǎn)總結(jié)3篇_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1/1高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)總結(jié)3篇高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)總結(jié)11、向量的加法

向量的加法滿足*行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x,y+y)。

a+0=0+a=a。

向量加法的運(yùn)算律:

交換律:a+b=b+a;

結(jié)合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那么a=—b,b=—a,a+b=0。0的反向量為0

AB—AC=CB。即“共同起點(diǎn),指向被減”

a=(x,y)b=(x,y)則a—b=(x—x,y—y)。

3、數(shù)乘向量

實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當(dāng)λ>0時(shí),λa與a同方向;

當(dāng)λ高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)總結(jié)3篇擴(kuò)展閱讀

高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)總結(jié)3篇(擴(kuò)展1)

——高中數(shù)學(xué)學(xué)業(yè)水*考知識(shí)點(diǎn)總結(jié)(菁選5篇)

高中數(shù)學(xué)學(xué)業(yè)水*考知識(shí)點(diǎn)總結(jié)11、向量的加法

向量的加法滿足*行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x,y+y)。

a+0=0+a=a。

向量加法的運(yùn)算律:

交換律:a+b=b+a;

結(jié)合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那么a=b,b=a,a+b=0.0的反向量為0

ABAC=CB.即“共同起點(diǎn),指向被減”

a=(x,y)b=(x,y)則ab=(xx,yy).

3、數(shù)乘向量

實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當(dāng)λ>0時(shí),λa與a同方向;

當(dāng)λ1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ0)或反方向(λA或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫(huà)出箭頭示意圖,再利用定義判斷即可、

2、轉(zhuǎn)換法:

當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷、

3、集合法

在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為A、B,則:

若A∩B,則p是q的充分條件、

若A∪B,則p是q的必要條件、

若A=B,則p是q的充要條件、

若A∈B,且B∈A,則p是q的既不充分也不必要條件、

高中數(shù)學(xué)學(xué)業(yè)水*考知識(shí)點(diǎn)總結(jié)31、求函數(shù)的單調(diào)性:

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);

(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);

(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)、

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:

①求函數(shù)yf(x)的定義域;

②求導(dǎo)數(shù)f(x);

③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;

④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間、

反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立、

2、求函數(shù)的極值:

設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)、

可導(dǎo)函數(shù)的極值,可通過(guò)研究函數(shù)的單調(diào)性求得,基本步驟是:

(1)確定函數(shù)f(x)的定義域;

(2)求導(dǎo)數(shù)f(x);

(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:

(4)檢查f(x)的`符號(hào)并由表格判斷極值、

3、求函數(shù)的值與最小值:

如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值、函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的、

求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:

(1)求f(x)在區(qū)間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值

4、解決不等式的有關(guān)問(wèn)題:

(1)不等式恒成立問(wèn)題(絕對(duì)不等式問(wèn)題)可考慮值域、

f(x)(xA)的值域是[a,b]時(shí),

不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

不等式f(x)0恒成立的充要條件是f(x)min0,即a0、

f(x)(xA)的值域是(a,b)時(shí),

不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0、

(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0、

5、導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:

實(shí)際生活求解(?。┲祮?wèn)題,通常都可轉(zhuǎn)化為函數(shù)的最值、在利用導(dǎo)數(shù)來(lái)求函數(shù)最值時(shí),一定要注意,極值點(diǎn)的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明、

高中數(shù)學(xué)學(xué)業(yè)水*考知識(shí)點(diǎn)總結(jié)41、“包含”關(guān)系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)A={21=0}B=11“元素相同”

結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

①任何一個(gè)集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同時(shí)BíA那么A=B

3、不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集

高中數(shù)學(xué)學(xué)業(yè)水*考知識(shí)點(diǎn)總結(jié)5有界性

設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上*、

單調(diào)性

設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D、如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的、單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)、

奇偶性

設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù)、

幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變、

奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)、

設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù)、

幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱,亦即其圖在對(duì)y軸映射后不會(huì)改變、

偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)、

偶函數(shù)不可能是個(gè)雙射映射、

連續(xù)性

在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性、直觀上來(lái)說(shuō),連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù)、如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說(shuō)具有不連續(xù)性)、

高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)總結(jié)3篇(擴(kuò)展2)

——高中數(shù)學(xué)水*考知識(shí)點(diǎn)歸納(菁選3篇)

高中數(shù)學(xué)水*考知識(shí)點(diǎn)歸納1集合有關(guān)概念

1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

2、集合的中元素的三個(gè)特性:

1.元素的確定性;

2.元素的互異性;

3.元素的無(wú)序性

說(shuō)明:

(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

(3)集合中的元素是*等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊(duì)員},{太*洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意?。撼S脭?shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

關(guān)于“屬于”的概念

集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。

描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

①語(yǔ)言描述法:例:{不是直角三角形的三角形}

②數(shù)學(xué)式子描述法:例:不等式x3>2的'解集是{x?Rx3>2}或{_3>2}

4、集合的分類:

1.有限集含有有限個(gè)元素的集合

2.無(wú)限集含有無(wú)限個(gè)元素的集合

3.空集不含任何元素的集合例:{_2=5}

高中數(shù)學(xué)水*考知識(shí)點(diǎn)歸納2集合的分類

(1)按元素屬性分類,如點(diǎn)集,數(shù)集。

(2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集

關(guān)于集合的概念:

(1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

(2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的.一個(gè)元素。

(3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:

含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_;

整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的數(shù)。)

1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫(xiě)出只有集合內(nèi)的元素x才具有的性質(zhì)。

一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱描述法。

例如:集合A={x∈R│x21=0}的特征是X21=0

高中數(shù)學(xué)水*考知識(shí)點(diǎn)歸納31、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

①k=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

3.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導(dǎo)數(shù)的四則運(yùn)算法則:

5.導(dǎo)數(shù)的應(yīng)用:

(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導(dǎo)數(shù);

②求方程的根;

③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

(3)求可導(dǎo)函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)總結(jié)3篇(擴(kuò)展3)

——高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)整理(菁選2篇)

高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)整理1一、事件

1.在條件SS的必然事件.

2.在條件S下,一定不會(huì)發(fā)生的事件,叫做相對(duì)于條件S的不可能事件.

3.在條件SS的隨機(jī)事件.

二、概率和頻率

1.用概率度量隨機(jī)事件發(fā)生的可能性大小能為我們決策提供關(guān)鍵性依據(jù).

2.在相同條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA

nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.

3.對(duì)于給定的隨機(jī)事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).

三、事件的關(guān)系與運(yùn)算

四、概率的幾個(gè)基本性質(zhì)

1.概率的取值范圍:

2.必然事件的概率P(E)=3.不可能事件的概率P(F)=

4.概率的加法公式:

如果事件A與事件B互斥,則P(AB)=P(A)+P(B).

5.對(duì)立事件的`概率:

若事件A與事件B互為對(duì)立事件,則AB為必然事件.P(AB)=1,P(A)=1P(B).

高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)整理2方程的根與函數(shù)的零點(diǎn)

1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

3、函數(shù)零點(diǎn)的求法:

求函數(shù)的零點(diǎn):

1(代數(shù)法)求方程的實(shí)數(shù)根;

2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).

4、二次函數(shù)的零點(diǎn):

二次函數(shù).

1、△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

2、△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

3、△高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)總結(jié)3篇(擴(kuò)展4)

——高中數(shù)學(xué)知識(shí)點(diǎn)整理:三角函數(shù)公式5篇

高中數(shù)學(xué)知識(shí)點(diǎn)整理:三角函數(shù)公式1sinθ+sinφ=2sin[(θ+φ)/2]cos[(θφ)/2]

sinθsinφ=2cos[(θ+φ)/2]sin[(θφ)/2]

cosθ+cosφ=2cos[(θ+φ)/2]cos[(θφ)/2]

cosθcosφ=2sin[(θ+φ)/2]sin[(θφ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1tanAtanB)

tanAtanB=sin(AB)/cosAcosB=tan(AB)(1+tanAtanB)

高中數(shù)學(xué)知識(shí)點(diǎn)整理:三角函數(shù)公式2sinαsinβ=[cos(αβ)cos(α+β)]/2

cosαcosβ=[cos(α+β)+cos(αβ)]/2

sinαcosβ=[sin(α+β)+sin(αβ)]/2

cosαsinβ=[sin(α+β)sin(αβ)]/2

高中數(shù)學(xué)知識(shí)點(diǎn)整理:三角函數(shù)公式3sinα=∠α的對(duì)邊/斜邊

cosα=∠α的鄰邊/斜邊

tanα=∠α的對(duì)邊/∠α的鄰邊

cotα=∠α的鄰邊/∠α的對(duì)邊

高中數(shù)學(xué)知識(shí)點(diǎn)整理:三角函數(shù)公式4sin3a

=sin(2a+a)

=sin2acosa+cos2asina

高中數(shù)學(xué)知識(shí)點(diǎn)整理:三角函數(shù)公式5Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(αt),tant=A/B

高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)總結(jié)3篇(擴(kuò)展5)

——高中數(shù)學(xué)向量的線性運(yùn)算有哪些知識(shí)點(diǎn)(菁選2篇)

高中數(shù)學(xué)向量的線性運(yùn)算有哪些知識(shí)點(diǎn)1(1)向量

既有大小又有方向的量叫做向量.物理學(xué)中又叫做矢量.如力、速度、加速度、位移就是向量.

向量可以用一條有向線段(帶有方向的線段)來(lái)表示,用有向線段的長(zhǎng)度表示向量的大小,用箭頭所指的方向表示向量的方向.向量也可以用一個(gè)小寫(xiě)字母a,b,c表示,或用兩個(gè)大寫(xiě)字母加表示(其中前面的字母為起點(diǎn),后面的字母為終點(diǎn))

(5)*行向量

方向相同或相反的非零向量,叫做*行向量.*行向量也叫做共線向量.

若向量a、b*行,記作a∥b.

規(guī)定:0與任一向量*行.

(6)相等向量

長(zhǎng)度相等且方向相同的向量叫做相等向量.

①向量相等有兩個(gè)要素:一是長(zhǎng)度相等,二是方向相同,二者缺一不可.

②向量a,b相等記作a=b.

③零向量都相等.

④任何兩個(gè)相等的非零向量,都可用同一有向線段表示,但特別要注意向量相等與有向線段的.起點(diǎn)無(wú)關(guān).

高中數(shù)學(xué)向量的線性運(yùn)算有哪些知識(shí)點(diǎn)2(1)向量是區(qū)別于數(shù)量的一種量,既有大小,又有方向,任意兩個(gè)向量不能比較大小,只可以判斷它們是否相等,但向量的??梢员容^大小.

(2)向量共線與表示它們的有向線段共線不同.向量共線時(shí),表示向量的有向線段可以是*行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上.

(3)由向量相等的定義可知,對(duì)于一個(gè)向量,只要不改變它的大小和方向,它是可以任意*行移動(dòng)的,因此用有向線段表示向量時(shí),可以任意選取有向線段的起點(diǎn),由此也可得到:任意一組*行向量都可以*移到同一條直線上.

高中數(shù)學(xué)學(xué)業(yè)水*知識(shí)點(diǎn)總結(jié)3篇(擴(kuò)展6)

——高中數(shù)學(xué)必修三概率知識(shí)點(diǎn)總結(jié)(菁選2篇)

高中數(shù)學(xué)必修三概率知識(shí)點(diǎn)總結(jié)1第一部分

3.1.1—3.1.2隨機(jī)事件的概率及概率的意義

1、基本概念:

(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;

(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事

nA

件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=n

為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試

驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

nA

(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值n

,它具有一定的穩(wěn)

定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率

3.1.3概率的基本性質(zhì)

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;

(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;

(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A

∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)

2、概率的基本性質(zhì):

1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);

3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);

4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事

件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。

第二部分

3.2.1—3.2.2古典概型

(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。(2)古典概型的解題步驟;①求出總的基本事件數(shù);

②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=A包含的基本事件數(shù)

總的基本事件個(gè)數(shù)

(3)轉(zhuǎn)化的思想:常見(jiàn)的古典概率模型:拋硬幣、擲骰子、摸小球(學(xué)會(huì)編號(hào))、抽產(chǎn)品等等,很多概率模型可以轉(zhuǎn)化歸

結(jié)為以上的模型。

(4)若是無(wú)放回抽樣,則可以不帶順序

若是有放回抽樣,則應(yīng)帶順序,可以參考擲骰子兩次的模型。

第三部分

3.3.1—3.3.2幾何概型

1、基本概念:

(1)幾何概率模型特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.(2)幾何概型的概率公式:

構(gòu)成事件A的區(qū)域長(zhǎng)度(面積或體積)

P(A)=試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域長(zhǎng)度(面積或體積);

(3)幾何概型的解題步驟;

1、確定是何種比值:若變量選取在區(qū)間內(nèi)或線段上是長(zhǎng)度比,若變量選取在*面圖形內(nèi)是面積比,若變量選取在幾

何體內(nèi)是體積比。

2、找出臨界位置求解。

(4)特殊題型:相遇問(wèn)題:若題目中有兩個(gè)變量,則采用直角坐標(biāo)系數(shù)形結(jié)合的方法求解。

高中數(shù)學(xué)必修三概率知識(shí)點(diǎn)總結(jié)2概率

3.1.1—3.1.2隨機(jī)事件的概率及概率的意義

1、基本概念:

(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的'確定事件;

(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率

3.1.3概率的基本性質(zhì)

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;

(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;

(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立事件,則A∪

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論