版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
17.1.1OverviewandLimitations
NOxemissionconsistsofmostlynitricoxide(NO).Lesssignificantarenitrogenoxide(NO2)andnitrousoxide(N2O).NOxisaprecursorforphotochemicalsmog,contributestoacidrain,andcausesozonedepletion.Thus,NOxisapollutant.TheFLUENTNOxmodelprovidesatooltounderstandthesourcesofNOxproductionandtoaidinthedesignofNOxcontrolmeasures.
NOxModelinginFLUENT
TheFLUENTNOxmodelprovidesthecapabilitytomodelthermal,prompt,andfuelNOxformationaswellasNOxconsumptionduetoreburningincombustionsystems.ItusesratemodelsdevelopedattheDepartmentofFuelandEnergy,TheUniversityofLeeds,Englandaswellasfromtheopenliterature.
TopredictNOxemission,FLUENTsolvesatransportequationfornitricoxide(NO)concentration.WithfuelNOxsources,FLUENTsolvesanadditionaltransportequationforanintermediatespecies(HCNorNH3).TheNOxtransportequationsaresolvedbasedonagivenflowfieldandcombustionsolution.Inotherwords,NOxispostprocessedfromacombustionsimulation.ItisthusevidentthatanaccuratecombustionsolutionbecomesaprerequisiteofNOxprediction.Forexample,thermalNOxproductiondoublesforevery90
Ktemperatureincreasewhentheflametemperatureisabout2200
K.Greatcaremustbeexercisedtoprovideaccuratethermophysicaldataandboundaryconditioninputsforthecombustionmodel.Appropriateturbulence,chemistry,radiationandothersubmodelsmustbeapplied.
Toberealistic,onecanonlyexpectresultstobeasaccurateastheinputdataandtheselectedphysicalmodels.Undermostcircumstances,NOxvariationtrendscanbeaccuratelypredictedbuttheNOxquantityitselfcannotbepinpointed.AccuratepredictionofNOxparametrictrendscancutdownonthenumberoflaboratorytests,allowmoredesignvariationstobestudied,shortenthedesigncycle,andreduceproductdevelopmentcost.ThatistrulythepoweroftheFLUENTNOxmodeland,infact,thepowerofCFDingeneral.
TheFormationofNOxinFlames
Inlaminarflames,andatthemolecularlevelwithinturbulentflames,theformationofNOxcanbeattributedtofourdistinctchemicalkineticprocesses:thermalNOxformation,promptNOxformation,fuelNOxformation,andreburning.ThermalNOxisformedbytheoxidationofatmosphericnitrogenpresentinthecombustionair.PromptNOxisproducedbyhigh-speedreactionsattheflamefront,andfuelNOxisproducedbyoxidationofnitrogencontainedinthefuel.ThereburningmechanismreducesthetotalNOxformationbyaccountingforthereactionofNOwithhydrocarbons.TheFLUENTNOxmodelisabletosimulateallfouroftheseprocesses.
RestrictionsonNOxModeling
Youmustusethesegregatedsolver.TheNOxmodelsarenotavailablewitheitherofthecoupledsolvers.
TheNOxmodelscannotbeusedinconjunctionwiththepremixedcombustionmodel.
17.1.2GoverningEquationsforNOxTransport
FLUENTsolvesthemasstransportequationfortheNOspecies,takingintoaccountconvection,diffusion,productionandconsumptionofNOandrelatedspecies.Thisapproachiscompletelygeneral,beingderivedfromthefundamentalprincipleofmassconservation.TheeffectofresidencetimeinNOxmechanisms,aLagrangianreferenceframeconcept,isincludedthroughtheconvectiontermsinthegoverningequationswrittenintheEulerianreferenceframe.ForthermalandpromptNOxmechanisms,onlytheNOspeciestransportequationisneeded:
(17.1.1)
AsdiscussedinSection
17.1.5
,thefuelNOxmechanismsaremoreinvolved.Thetrackingofnitrogen-containingintermediatespeciesisimportant.FLUENTsolvesatransportequationfortheHCNorNH3speciesinadditiontotheNOspecies:
(17.1.10)
(17.1.11)
(17.1.12)
Intheaboveexpressions,k1,k2,andk3aretherateconstantsfortheforwardreactions
17.1-4
-
17.1-6
,respectively,andk-1,k-2,andk-3arethecorrespondingreverserates.
ThenetrateofformationofNOviaReactions
17.1-4
-
17.1-6
isgivenby
=
-
(17.1.13)
whereallconcentrationshaveunitsofgmol/m3.
InordertocalculatetheformationratesofNOandN,theconcentrationsofO,H,andOHarerequired.
TheQuasi-SteadyAssumptionfor[N]
TherateofformationofNOxissignificantonlyathightemperatures(greaterthan1800
K)becausefixationofnitrogenrequiresthebreakingofthestrongN2triplebond(dissociationenergyof941kJ/gmol).ThiseffectisrepresentedbythehighactivationenergyofReaction
17.1-4
,whichmakesittherate-limitingstepoftheextendedZeldovichmechanism.However,theactivationenergyforoxidationofNatomsissmall.Whenthereissufficientoxygen,asinafuel-leanflame,therateofconsumptionoffreenitrogenatomsbecomesequaltotherateofitsformationandthereforeaquasi-steadystatecanbeestablished.Thisassumptionisvalidformostcombustioncasesexceptinextremelyfuel-richcombustionconditions.HencetheNOformationratebecomes
(17.1.14)
SensitivityofThermalNOxtoTemperature
FromEquation
17.1-14
itisclearthattherateofformationofNOwillincreasewithincreasingoxygenconcentration.ItalsoappearsthatthermalNOformationshouldbehighlydependentontemperaturebutindependentoffueltype.Infact,basedonthelimitingratedescribedinEquation
17.1-7
,thermalNOxproductionratedoublesforevery90
Ktemperatureincreasebeyond2200
K.
DecouplingNOxandFlameCalculations
InordertosolveEquation
17.1-14
,concentrationofOatomsandthefreeradicalOHwillberequiredinadditiontoconcentrationofstablespecies(i.e.,O2,N2).FollowingthesuggestionbyZeldovich,thethermalNOxformationmechanismcanbedecoupledfromthemaincombustionprocess,byassumingequilibriumvaluesoftemperature,stablespecies,Oatoms,andOHradicals.However,radicalconcentrations,Oatomsinparticular,areobservedtobemoreabundantthantheirequilibriumlevels.TheeffectofpartialequilibriumOatomsonNOxformationratehasbeeninvestigated
[
159
]duringlaminarmethane-aircombustion.TheresultsoftheseinvestigationsindicatethatthelevelofNOxemissioncanbeunderpredictedbyasmuchas28%intheflamezone,whenassumingequilibriumO-atomconcentrations.
DeterminingORadicalConcentration
Therehasbeenlittledetailedstudyofradicalconcentrationinindustrialturbulentflames,butwork
[
56
]hasdemonstratedtheexistenceofthisphenomenoninturbulentdiffusionflames.Presently,thereisnodefinitiveconclusionastotheeffectofpartialequilibriumonNOxformationratesinturbulentflames.PetersandDonnerhack
[
178
]suggestthatpartialequilibriumradicalscanaccountfornomorethana25%increaseinthermalNOxandthatfluiddynamicshasthedominanteffectonNOxformationrate.Bilgeretal.
[
18
]suggestthatinturbulentdiffusionflames,theeffectofOatomovershootonNOxformationrateisveryimportant.
Inordertoovercomethispossibleinaccuracy,oneapproachwouldbetocoupletheextendedZeldovichmechanismwithadetailedhydrocarboncombustionmechanisminvolvingmanyreactions,species,andsteps.Thisapproachhasbeenusedpreviouslyforresearchpurposes
[
156
].However,longcomputerprocessingtimehasmadethemethodeconomicallyunattractiveanditsextensiontoturbulentflowsdifficult.
TodeterminetheOradicalconcentration,FLUENTusesoneofthreeapproaches--theequilibriumapproach,thepartialequilibriumapproach,andthepredictedconcentrationapproach--inrecognitionoftheongoingcontroversydiscussedabove.
Method1:EquilibriumApproach
ThekineticsofthethermalNOxformationrateismuchslowerthanthemainhydrocarbonoxidationrate,andsomostofthethermalNOxisformedaftercompletionofcombustion.Therefore,thethermalNOxformationprocesscanoftenbedecoupledfromthemaincombustionreactionmechanismandtheNOxformationratecanbecalculatedbyassumingequilibrationofthecombustionreactions.Usingthisapproach,thecalculationofthethermalNOxformationrateisconsiderablysimplified.Theassumptionofequilibriumcanbejustifiedbyareductionintheimportanceofradicalovershootsathigherflametemperature
[
55
].AccordingtoWestenberg
[
265
],theequilibriumO-atomconcentrationcanbeobtainedfromtheexpression
(17.1.15)
Withkpincluded,thisexpressionbecomes
(17.1.16)
whereTisinKelvin.
Method2:PartialEquilibriumApproach
Animprovementtomethod1canbemadebyaccountingforthird-bodyreactionsintheO2dissociation-recombinationprocess:
(17.1.17)
Equation
17.1-16
isthenreplacedbythefollowingexpression
[
255
]:
(17.1.18)
whichgenerallyleadstoahigherpartialO-atomconcentration.
Method3:PredictedOApproach
WhentheO-atomconcentrationiswell-predictedusinganadvancedchemistrymodel(suchastheflameletsubmodelofthenon-premixedmodel),[O]canbetakensimplyfromthelocalO-speciesmassfraction.
DeterminingOHRadicalConcentration
FLUENTusesoneofthreeapproachestodeterminetheOHradicalconcentration:theexclusionofOHfromthethermalNOxcalculationapproach,thepartialequilibriumapproach,andtheuseofthepredictedOHconcentrationapproach.
Method1:ExclusionofOHApproach
Inthisapproach,thethirdreactionintheextendedZeldovichmechanism(Equation
17.1-6
)isassumedtobenegligiblethroughthefollowingobservation:
Thisassumptionisjustifiedforleanfuelconditionsandisareasonableassumptionformostcases.
Method2:PartialEquilibriumApproach
Inthisapproach,theconcentrationofOHinthethirdreactionintheextendedZeldovichmechanism(Equation
17.1-6
)isgivenby
[
12
,
264
]
(17.1.19)
Method3:PredictedOHApproach
AsinthepredictedOapproach,whentheOHradicalconcentrationiswell-predictedusinganadvancedchemistrymodelsuchastheflameletmodel,[OH]canbetakendirectlyfromthelocalOHspeciesmassfraction.
Summary
Tosummarize,thermalNOxformationrateispredictedbyEquation
17.1-14
.TheO-atomconcentrationneededinEquation
17.1-14
iscomputedusingEquation
17.1-16
fortheequilibriumassumption,usingEquation
17.1-18
forapartialequilibriumassumption,orusingthelocalO-speciesmassfraction.Youwillmakethechoiceduringproblemsetup.IntermsofthetransportequationforNO(Equation
17.1-1
),theNOsourcetermduetothermalNOxmechanismsis
(17.1.20)
whereisthemolecularweightofNO,andiscomputedfromEquation
17.1-14
.
17.1.4PromptNOxFormation
Itisknownthatduringcombustionofhydrocarbonfuels,theNOxformationratecanexceedthatproducedfromdirectoxidationofnitrogenmolecules(i.e.,thermalNOx).
WhereandWhenPromptNOxOccurs
ThepresenceofasecondmechanismleadingtoNOxformationwasfirstidentifiedbyFenimore
[
63
]andwastermed``promptNOx''.ThereisgoodevidencethatpromptNOxcanbeformedinasignificantquantityinsomecombustionenvironments,suchasinlow-temperature,fuel-richconditionsandwhereresidencetimesareshort.Surfaceburners,stagedcombustionsystems,andgasturbinescancreatesuchconditions
[
6
].
AtpresentthepromptNOxcontributiontototalNOxfromstationarycombustorsissmall.However,asNOxemissionsarereducedtoverylowlevelsbyemployingnewstrategies(burnerdesignorfurnacegeometrymodification),therelativeimportanceofthepromptNOxcanbeexpectedtoincrease.
PromptNOxMechanism
PromptNOxismostprevalentinrichflames.Theactualformationinvolvesacomplexseriesofreactionsandmanypossibleintermediatespecies.Theroutenowacceptedisasfollows:
(17.1.21)
(17.1.22)
(17.1.23)
(17.1.24)
AnumberofspeciesresultingfromfuelfragmentationhavebeensuggestedasthesourceofpromptNOxinhydrocarbonflames(e.g.,CH,CH2,C,C2H),butthemajorcontributionisfromCH(Equation
17.1-21
)andCH2,via
(17.1.25)
TheproductsofthesereactionscouldleadtoformationofaminesandcyanocompoundsthatsubsequentlyreacttoformNObyreactionssimilartothoseoccurringinoxidationoffuelnitrogen,forexample:
(17.1.26)
FactorsofPromptNOxFormation
PromptNOxformationisproportionaltothenumberofcarbonatomspresentperunitvolumeandisindependentoftheparenthydrocarbonidentity.ThequantityofHCNformedincreaseswiththeconcentrationofhydrocarbonradicals,whichinturnincreaseswithequivalenceratio.Astheequivalenceratioincreases,promptNOxproductionincreasesatfirst,thenpassesapeak,andfinallydecreasesduetoadeficiencyinoxygen.
PrimaryReaction
Reaction
17.1-21
isofprimaryimportance.Inrecentstudies
[
201
],comparisonofprobabilitydensitydistributionsforthelocationofthepeakNOxwiththoseobtainedforthepeakCHhaveshownclosecorrespondence,indicatingthatthemajorityoftheNOxattheflamebaseispromptNOxformedbytheCHreaction.AssumingthatReaction
17.1-21
controlsthepromptNOxformationrate,
(17.1.27)
ModelingStrategy
Thereare,however,uncertaintiesabouttheratedatafortheabovereaction.FromReactions
17.1-21
-
17.1-25
,itcanbeconcludedthatthepredictionofpromptNOxformationwithintheflamerequirescouplingoftheNOxkineticstoanactualhydrocarboncombustionmechanism.Hydrocarboncombustionmechanismsinvolvemanystepsand,asmentionedpreviously,areextremelycomplexandcostlytocompute.InthepresentNOxmodel,aglobalkineticparameterderivedbyDe
Soete
[
223
]isused.De
SoetecomparedtheexperimentalvaluesoftotalNOxformationratewiththerateofformationcalculatedbynumericalintegrationoftheempiricaloverallreactionratesofNOxandN2formation.Heshowedthatoverallpromptformationratecanbepredictedfromtheexpression
=
(17.1.28)
Intheearlystagesoftheflame,wherepromptNOxisformedunderfuel-richconditions,theOconcentrationishighandtheNradicalalmostexclusivelyformsNOxratherthannitrogen.Therefore,thepromptNOxformationratewillbeapproximatelyequaltotheoverallpromptNOxformationrate:
(17.1.29)
ForC2H4(ethylene)-airflames,
kpr
=
Ea
=
60kcal/gmol
whereaistheoxygenreactionorder,Ristheuniversalgasconstant,andpispressure(allinSIunits).TherateofpromptNOxformationisfoundtobeofthefirstorderwithrespecttonitrogenandfuelconcentration,buttheoxygenreactionorder,a,dependsonexperimentalconditions.
RateforMostHydrocarbonFuels
Equation
17.1-29
wastestedagainsttheexperimentaldataobtainedbyBackmieretal.
[
4
]fordifferentmixturestrengthsandfueltypes.Thepredictedresultsindicatedthatthemodelperformancedeclinedsignificantlyunderfuel-richconditionsandforhigherhydrocarbonfuels.ToreducethiserrorandpredictthepromptNOxadequatelyinallconditions,theDe
Soetemodelwasmodifiedusingtheavailableexperimentaldata.Acorrectionfactor,f,wasdeveloped,whichincorporatestheeffectoffueltype,i.e.,numberofcarbonatoms,andair-to-fuelratioforgaseousaliphatichydrocarbons.Equation
17.1-29
nowbecomes
(17.1.30)
sothatthesourcetermduetopromptNOxmechanismis
(17.1.31)
Intheaboveequations,
(17.1.32)
nisthenumberofcarbonatomspermoleculeforthehydrocarbonfuel,andistheequivalenceratio.Thecorrectionfactorisacurvefitforexperimentaldata,validforaliphaticalkanehydrocarbonfuels(CnH2n+2)andforequivalenceratiosbetween0.6and1.6.Forvaluesoutsidetherange,theappropriatelimitshouldbeused.Valuesofk'prandE'aareselectedinaccordancewithreference
[
58
].
Heretheconceptofequivalenceratioreferstoanoverallequivalenceratiofortheflame,ratherthananyspatiallyvaryingquantityintheflowdomain.Incomplexgeometrieswithmultipleburnersthismayleadtosomeuncertaintyinthespecificationof.However,sincethecontributionofpromptNOxtothetotalNOxemissionisoftenverysmall,resultsarenotlikelytobebiasedsignificantly.
OxygenReactionOrder
Oxygenreactionorderdependsonflameconditions.AccordingtoDeSoete
[
223
],oxygenreactionorderisuniquelyrelatedtooxygenmolefractionintheflame:
(17.1.33)
17.1.5FuelNOxFormation
Fuel-BoundN2
Itiswellknownthatnitrogen-containingorganiccompoundspresentinliquidorsolidfossilfuelcancontributetothetotalNOxformedduringthecombustionprocess.Thisfuelnitrogenisaparticularlyimportantsourceofnitrogenoxideemissionsforresidualfueloilandcoal,whichtypicallycontain0.3-2%nitrogenbyweight.Studieshaveshownthatmostofthenitrogeninheavyfueloilsisintheformofheterocyclesanditisthoughtthatthenitrogencomponentsofcoalaresimilar
[
107
].Itisbelievedthatpyridine,quinoline,andaminetypeheterocyclicringstructuresareofimportance.
ReactionPathways
TheextentofconversionoffuelnitrogentoNOxisdependentonthelocalcombustioncharacteristicsandtheinitialconcentrationofnitrogen-boundcompounds.Fuel-boundnitrogen-containingcompoundsarereleasedintothegasphasewhenthefueldropletsorparticlesareheatedduringthedevolatilizationstage.Fromthethermaldecompositionofthesecompounds,(aniline,pyridine,pyrroles,etc.)inthereactionzone,radicalssuchasHCN,NH3,N,CN,andNHcanbeformedandconvertedtoNOx.Theabovefreeradicals(i.e.,secondaryintermediatenitrogencompounds)aresubjecttoadoublecompetitivereactionpath.Thischemicalmechanismhasbeensubjecttoseveraldetailedinvestigations
[
157
].AlthoughtherouteleadingtofuelNOxformationanddestructionisstillnotcompletelyunderstood,differentinvestigatorsseemtoagreeonasimplifiedmodel:
Recentinvestigations
[
94
]haveshownthathydrogencyanideappearstobetheprincipalproductiffuelnitrogenispresentinaromaticorcyclicform.However,whenfuelnitrogenispresentintheformofaliphaticamines,ammoniabecomestheprincipalproductoffuelnitrogenconversion.
IntheFLUENTNOxmodel,sourcesofNOxemissionforgaseous,liquidandcoalfuelsareconsideredseparately.Thenitrogen-containingintermediatesaregroupedtobeHCNorNH3only.Twotransportequations(
17.1-1
and
17.1-2
or
17.1-3
)aresolved.Thesourceterms,,andaretobedeterminednextfordifferentfueltypes.DiscussionstofollowreferonlytofuelNOxsourcesfor.Contributionsfromthermalandpromptmechanismshavebeendiscussedinprevioussections.
FuelNOxfromGaseousandLiquidFuels
ThefuelNOxmechanismsforgaseousandliquidfuelsarebasedondifferentphysicsbutthesamechemicalreactionpathways.
FuelNOxfromIntermediateHydrogenCyanide(HCN)
WhenHCNisusedastheintermediatespecies:
Thesourcetermsinthetransportequationscanbewrittenasfollows:
(17.1.34)
(17.1.35)
HCNProductioninaGaseousFuel
TherateofHCNproductionisequivalenttotherateofcombustionofthefuel:
(17.1.36)
where
=
sourceofHCN(kg/m3-s)
=
meanlimitingreactionrateoffuel(kg/m3-s)
=
massfractionofnitrogeninthefuel
Themeanlimitingreactionrateoffuel,,iscalculatedfromtheMagnussencombustionmodel,sothegaseousfuelNOxoptionisavailableonlywhenthegeneralizedfinite-ratemodelisused.
HCNProductioninaLiquidFuel
TherateofHCNproductionisequivalenttotherateoffuelreleaseintothegasphasethroughdropletevaporation:
(17.1.37)
where
=
sourceofHCN(kg/m3-s)
=
rateoffuelreleasefromthe
liquiddropletstothegas(kg/s)
=
massfractionofnitrogeninthefuel
V
=
cellvolume(m3)
HCNConsumption
TheHCNdepletionratesfromreactions(1)and(2)intheabovemechanismarethesameforbothgaseousandliquidfuels,andaregivenbyDeSoete
[
223
]as
(17.1.38)
(17.1.39)
where
,
=
conversionratesofHCN(s-1)
T
=
instantaneoustemperature(K)
X
=
molefractions
A1
=
3.5s-1
A2
=
3.0s-1
E1
=
67kcal/gmol
E2
=
60kcal/gmol
Theoxygenreactionorder,a,iscalculatedfromEquation
17.1-33
.
Sincemolefractionisrelatedtomassfractionthroughmolecularweightsofthespecies(Mw,i)andthemixture(Mw,m),
(17.1.40)
HCNSourcesintheTransportEquation
ThemassconsumptionratesofHCNwhichappearinEquation
17.1-34
arecalculatedas
(17.1.41)
(17.1.42)
where
=
consumptionratesofHCNin
reactions1and2respectively(kg/m3-s)
p
=
pressure(Pa)
=
meantemperature(K)
R
=
universalgasconstant
NOxSourcesintheTransportEquation
NOxisproducedinreaction1butdestroyedinreaction2.ThesourcesforEquation
17.1-35
arethesameforagaseousasforaliquidfuel,andareevaluatedasfollows:
(17.1.43)
(17.1.44)
FuelNOxfromIntermediateAmmonia(NH3)
WhenNH3isusedastheintermediatespecies:
Thesourcetermsinthetransportequationscanbewrittenasfollows:
(17.1.45)
(17.1.46)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國(guó)銀行保險(xiǎn)行業(yè)市場(chǎng)前景預(yù)測(cè)及投資戰(zhàn)略研究報(bào)告
- 2025年行政事業(yè)單位物業(yè)設(shè)備采購(gòu)與安裝合同2篇
- 2025年浙江新北園區(qū)開發(fā)有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年福建東南設(shè)計(jì)集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 二零二五年度二零二五健康養(yǎng)生產(chǎn)品銷售代理合同4篇
- 2025年山西晉沃投資發(fā)展有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年廣西合山市儲(chǔ)備糧管理公司招聘筆試參考題庫(kù)含答案解析
- 2025年合肥肥西縣鄉(xiāng)村振興投資集團(tuán)有限公司子公司招聘筆試參考題庫(kù)附帶答案詳解
- 《藥品銷售專業(yè)人士高級(jí)培訓(xùn)課件》
- 二零二五年度門窗玻璃深加工合作協(xié)議2篇
- 高考對(duì)聯(lián)題(對(duì)聯(lián)知識(shí)、高考真題及答案、對(duì)應(yīng)練習(xí)題)
- 新版《鐵道概論》考試復(fù)習(xí)試題庫(kù)(含答案)
- 【律師承辦案件費(fèi)用清單】(計(jì)時(shí)收費(fèi))模板
- 高中物理競(jìng)賽真題分類匯編 4 光學(xué) (學(xué)生版+解析版50題)
- Unit1FestivalsandCelebrations詞匯清單高中英語(yǔ)人教版
- 西方經(jīng)濟(jì)學(xué)-高鴻業(yè)-筆記
- 2024年上海市中考語(yǔ)文試題卷(含答案)
- 幼兒園美術(shù)教育研究策略國(guó)內(nèi)外
- 生豬養(yǎng)殖生產(chǎn)過(guò)程信息化與數(shù)字化管理
- (完整)六年級(jí)數(shù)學(xué)上冊(cè)寒假每天10道計(jì)算題5道應(yīng)用題
- (2024年)版ISO9001質(zhì)量管理體系培訓(xùn)教材
評(píng)論
0/150
提交評(píng)論