2021-2022學(xué)年浙江省金華市蘭溪二中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
2021-2022學(xué)年浙江省金華市蘭溪二中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
2021-2022學(xué)年浙江省金華市蘭溪二中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
2021-2022學(xué)年浙江省金華市蘭溪二中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
2021-2022學(xué)年浙江省金華市蘭溪二中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022學(xué)年浙江省金華市蘭溪二中學(xué)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,以兩條直線l1,l2的交點(diǎn)坐標(biāo)為解的方程組是()A. B. C. D.2.下列圖形中,既是中心對(duì)稱,又是軸對(duì)稱的是()A. B. C. D.3.已知⊙O及⊙O外一點(diǎn)P,過點(diǎn)P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學(xué)的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點(diǎn)A;②以點(diǎn)A為圓心、OA為半徑畫弧、交⊙O于點(diǎn)M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經(jīng)過點(diǎn)P;②調(diào)整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點(diǎn)落在⊙O上,記這時(shí)直角頂點(diǎn)的位置為點(diǎn)M;③作直線PM,則直線PM即為所求(如圖2).對(duì)于兩人的作業(yè),下列說法正確的是()A.甲乙都對(duì) B.甲乙都不對(duì)C.甲對(duì),乙不對(duì) D.甲不對(duì),已對(duì)4.在反比例函數(shù)的圖象的每一個(gè)分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<15.為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià),水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統(tǒng)計(jì)圖,如圖所示.下面有四個(gè)推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價(jià)交費(fèi);②年用水量不超過240m1的該市居民家庭按第三檔水價(jià)交費(fèi);③該市居民家庭年用水量的中位數(shù)在150~180m1之間;④該市居民家庭年用水量的眾數(shù)約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④6.用一根長為a(單位:cm)的鐵絲,首尾相接圍成一個(gè)正方形,要將它按圖的方式向外等距擴(kuò)1(單位:cm)得到新的正方形,則這根鐵絲需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm7.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個(gè)數(shù)是①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.48.如圖,有一些點(diǎn)組成形如四邊形的圖案,每條“邊”(包括頂點(diǎn))有n(n>1)個(gè)點(diǎn).當(dāng)n=2018時(shí),這個(gè)圖形總的點(diǎn)數(shù)S為()A.8064 B.8067 C.8068 D.80729.下列運(yùn)算中,正確的是()A.(a3)2=a5 B.(﹣x)2÷x=﹣xC.a(chǎn)3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x610.如圖圖形中,可以看作中心對(duì)稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.12.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設(shè)Q、R分別是AB、AD上的動(dòng)點(diǎn),則△CQR的周長的最小值為_________.13.如圖所示,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點(diǎn)上,則∠AED的正切值等于__________.14.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.15.如圖,⊙O中,弦AB、CD相交于點(diǎn)P,若∠A=30°,∠APD=70°,則∠B等于_____.16.如圖,設(shè)△ABC的兩邊AC與BC之和為a,M是AB的中點(diǎn),MC=MA=5,則a的取值范圍是_____.17.如圖,正△ABC的邊長為2,點(diǎn)A、B在半徑為2的圓上,點(diǎn)C在圓內(nèi),將正ΔABC繞點(diǎn)A逆時(shí)針針旋轉(zhuǎn),當(dāng)點(diǎn)C第一次落在圓上時(shí),旋轉(zhuǎn)角的正切值為_______________三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標(biāo)系xOy中,若拋物線頂點(diǎn)A的橫坐標(biāo)是,且與y軸交于點(diǎn),點(diǎn)P為拋物線上一點(diǎn).求拋物線的表達(dá)式;若將拋物線向下平移4個(gè)單位,點(diǎn)P平移后的對(duì)應(yīng)點(diǎn)為如果,求點(diǎn)Q的坐標(biāo).19.(5分)如圖,△ABC是⊙O的內(nèi)接三角形,點(diǎn)D在上,點(diǎn)E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當(dāng)為何值時(shí),AB?AC的值最大?20.(8分)如圖(1),AB=CD,AD=BC,O為AC中點(diǎn),過O點(diǎn)的直線分別與AD、BC相交于點(diǎn)M、N,那么∠1與∠2有什么關(guān)系?請(qǐng)說明理由;若過O點(diǎn)的直線旋轉(zhuǎn)至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關(guān)系成立嗎?請(qǐng)說明理由.21.(10分)如圖,△ABC中,D是BC上的一點(diǎn),若AB=10,BD=6,AD=8,AC=17,求△ABC的面積.22.(10分)如圖,已知點(diǎn)D在△ABC的外部,AD∥BC,點(diǎn)E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點(diǎn)F,如果∠AFE=∠D,求證:.23.(12分)先化簡,再求值:,其中與2,3構(gòu)成的三邊,且為整數(shù).24.(14分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱軸交AC于點(diǎn)D,動(dòng)點(diǎn)P在拋物線對(duì)稱軸上,動(dòng)點(diǎn)Q在拋物線上.(1)求拋物線的解析式;(2)當(dāng)PO+PC的值最小時(shí),求點(diǎn)P的坐標(biāo);(3)是否存在以A,C,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P,Q的坐標(biāo);若不存在,請(qǐng)說明理由.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】

兩條直線的交點(diǎn)坐標(biāo)應(yīng)該是聯(lián)立兩個(gè)一次函數(shù)解析式所組成的方程組的解.因此本題需先根據(jù)兩直線經(jīng)過的點(diǎn)的坐標(biāo),用待定系數(shù)法求出兩直線的解析式.然后聯(lián)立兩函數(shù)的解析式可得出所求的方程組.【詳解】直線l1經(jīng)過(2,3)、(0,-1),易知其函數(shù)解析式為y=2x-1;直線l2經(jīng)過(2,3)、(0,1),易知其函數(shù)解析式為y=x+1;因此以兩條直線l1,l2的交點(diǎn)坐標(biāo)為解的方程組是:.故選C.【點(diǎn)睛】本題主要考查了函數(shù)解析式與圖象的關(guān)系,滿足解析式的點(diǎn)就在函數(shù)的圖象上,在函數(shù)的圖象上的點(diǎn),就一定滿足函數(shù)解析式.函數(shù)圖象交點(diǎn)坐標(biāo)為兩函數(shù)解析式組成的方程組的解.2、C【解析】

根據(jù)中心對(duì)稱圖形,軸對(duì)稱圖形的定義進(jìn)行判斷.【詳解】A、是中心對(duì)稱圖形,不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、既是中心對(duì)稱圖形,又是軸對(duì)稱圖形,故本選項(xiàng)正確;D、不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了中心對(duì)稱圖形,軸對(duì)稱圖形的判斷.關(guān)鍵是根據(jù)圖形自身的對(duì)稱性進(jìn)行判斷.3、A【解析】

(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進(jìn)而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經(jīng)過點(diǎn)P,它的另一條直角邊過圓心O,直角頂點(diǎn)落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點(diǎn)A,∴OA=AP.∵以點(diǎn)A為圓心、OA為半徑畫弧、交⊙O于點(diǎn)M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經(jīng)過點(diǎn)P,它的另一條直角邊過圓心O,直角頂點(diǎn)落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學(xué)的作法都正確.故選A.【點(diǎn)睛】本題考查了復(fù)雜的作圖,重點(diǎn)是運(yùn)用切線的判定來說明作法的正確性.4、A【解析】

根據(jù)反比例函數(shù)的性質(zhì),當(dāng)反比例函數(shù)的系數(shù)大于0時(shí),在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【詳解】解:根據(jù)題意,在反比例函數(shù)圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點(diǎn)評(píng)】本題考查了反比例函數(shù)的性質(zhì):①當(dāng)k>0時(shí),圖象分別位于第一、三象限;當(dāng)k<0時(shí),圖象分別位于第二、四象限.②當(dāng)k>0時(shí),在同一個(gè)象限內(nèi),y隨x的增大而減??;當(dāng)k<0時(shí),在同一個(gè)象限,y隨x的增大而增大.5、B【解析】

利用條形統(tǒng)計(jì)圖結(jié)合中位數(shù)和中位數(shù)的定義分別分析得出答案.【詳解】①由條形統(tǒng)計(jì)圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),

×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價(jià)交費(fèi),正確;

②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),

∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價(jià)交費(fèi),故此選項(xiàng)錯(cuò)誤;

③∵5萬個(gè)數(shù)據(jù)的中間是第25000和25001的平均數(shù),

∴該市居民家庭年用水量的中位數(shù)在120-150之間,故此選項(xiàng)錯(cuò)誤;

④該市居民家庭年用水量為110m1有1.5萬戶,戶數(shù)最多,該市居民家庭年用水量的眾數(shù)約為110m1,因此正確,

故選B.【點(diǎn)睛】此題主要考查了頻數(shù)分布直方圖以及中位數(shù)和眾數(shù)的定義,正確利用條形統(tǒng)計(jì)圖獲取正確信息是解題關(guān)鍵.6、B【解析】【分析】根據(jù)題意得出原正方形的邊長,再得出新正方形的邊長,繼而得出答案.【詳解】∵原正方形的周長為acm,∴原正方形的邊長為cm,∵將它按圖的方式向外等距擴(kuò)1cm,∴新正方形的邊長為(+2)cm,則新正方形的周長為4(+2)=a+8(cm),因此需要增加的長度為a+8﹣a=8cm,故選B.【點(diǎn)睛】本題考查列代數(shù)式,解題的關(guān)鍵是根據(jù)題意表示出新正方形的邊長及規(guī)范書寫代數(shù)式.7、D【解析】

①根據(jù)作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點(diǎn)D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結(jié)論是:①②③④,,共有4個(gè).故選D.8、C【解析】分析:本題重點(diǎn)注意各個(gè)頂點(diǎn)同時(shí)在兩條邊上,計(jì)算點(diǎn)的個(gè)數(shù)時(shí),不要把頂點(diǎn)重復(fù)計(jì)算了.詳解:此題中要計(jì)算點(diǎn)的個(gè)數(shù),可以類似周長的計(jì)算方法進(jìn)行,但應(yīng)注意各個(gè)頂點(diǎn)重復(fù)了一次.如當(dāng)n=2時(shí),共有S2=4×2﹣4=4;當(dāng)n=3時(shí),共有S3=4×3﹣4,…,依此類推,即Sn=4n﹣4,當(dāng)n=2018時(shí),S2018=4×2018﹣4=1.故選C.點(diǎn)睛:本題考查了圖形的變化類問題,關(guān)鍵是通過歸納與總結(jié),得到其中的規(guī)律.9、D【解析】

根據(jù)同底數(shù)冪的除法、乘法的運(yùn)算方法,冪的乘方與積的乘方的運(yùn)算方法,以及單項(xiàng)式乘單項(xiàng)式的方法,逐項(xiàng)判定即可.【詳解】∵(a3)2=a6,∴選項(xiàng)A不符合題意;∵(-x)2÷x=x,∴選項(xiàng)B不符合題意;∵a3(-a)2=a5,∴選項(xiàng)C不符合題意;∵(-2x2)3=-8x6,∴選項(xiàng)D符合題意.故選D.【點(diǎn)睛】此題主要考查了同底數(shù)冪的除法、乘法的運(yùn)算方法,冪的乘方與積的乘方的運(yùn)算方法,以及單項(xiàng)式乘單項(xiàng)式的方法,要熟練掌握.10、D【解析】

根據(jù)把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做對(duì)稱中心進(jìn)行分析即可.【詳解】解:A、不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;B、不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;C、不是中心對(duì)稱圖形,故此選項(xiàng)不合題意;D、是中心對(duì)稱圖形,故此選項(xiàng)符合題意;故選D.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形,關(guān)鍵掌握中心對(duì)稱圖形定義.二、填空題(共7小題,每小題3分,滿分21分)11、10或1【解析】

分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進(jìn)行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當(dāng)水位上升到圓心以下時(shí)

水面寬80cm時(shí),則,水面上升的高度為:;當(dāng)水位上升到圓心以上時(shí),水面上升的高度為:,綜上可得,水面上升的高度為30cm或1cm,故答案為:10或1.【點(diǎn)睛】本題考查了垂徑定理的應(yīng)用,掌握垂徑定理、靈活運(yùn)用分類討論的思想是解題的關(guān)鍵.12、【解析】

作C關(guān)于AB的對(duì)稱點(diǎn)G,關(guān)于AD的對(duì)稱點(diǎn)F,可得三角形CQR的周長=CQ+QR+CR=GQ+QR+RF≥GF.根據(jù)圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長,從而求出△CQR的周長的最小值.【詳解】解:作C關(guān)于AB的對(duì)稱點(diǎn)G,關(guān)于AD的對(duì)稱點(diǎn)F,則三角形CQR的周長=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點(diǎn)共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長的最小值為.【點(diǎn)睛】本題考查了軸對(duì)稱問題,關(guān)鍵是根據(jù)軸對(duì)稱的性質(zhì)和兩點(diǎn)之間線段最短解答.13、【解析】

根據(jù)同弧或等弧所對(duì)的圓周角相等來求解.【詳解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故選D.【點(diǎn)睛】本題利用了圓周角定理(同弧或等弧所對(duì)的圓周角相等)和正切的概念求解.14、-3<x<1【解析】試題分析:根據(jù)拋物線的對(duì)稱軸為x=﹣1,一個(gè)交點(diǎn)為(1,0),可推出另一交點(diǎn)為(﹣3,0),結(jié)合圖象求出y>0時(shí),x的范圍.解:根據(jù)拋物線的圖象可知:拋物線的對(duì)稱軸為x=﹣1,已知一個(gè)交點(diǎn)為(1,0),根據(jù)對(duì)稱性,則另一交點(diǎn)為(﹣3,0),所以y>0時(shí),x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點(diǎn):二次函數(shù)的圖象.15、40°【解析】

由∠A=30°,∠APD=70°,利用三角形外角的性質(zhì),即可求得∠C的度數(shù),又由在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,即可求得∠B的度數(shù).【詳解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B與∠C是對(duì)的圓周角,∴∠B=∠C=40°.故答案為40°.【點(diǎn)睛】此題考查了圓周角定理與三角形外角的性質(zhì).此題難度不大,解題的關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等定理的應(yīng)用.16、10<a≤10.【解析】

根據(jù)題設(shè)知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關(guān)系求得a的取值范圍;然后根據(jù)題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據(jù)根與系數(shù)的關(guān)系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【詳解】∵M(jìn)是AB的中點(diǎn),MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令A(yù)C=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個(gè)實(shí)根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【點(diǎn)睛】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強(qiáng),解題時(shí),還利用了一元二次方程的根與系數(shù)的關(guān)系、根的判別式的知識(shí)點(diǎn).17、3【解析】

作輔助線,首先求出∠DAC的大小,進(jìn)而求出旋轉(zhuǎn)的角度,即可得出答案.【詳解】如圖,分別連接OA、OB、OD;∵OA=OB=2,AB=2,∴△OAB是等腰直角三角形,∴∠OAB=45°;同理可證:∠OAD=45°,∴∠DAB=90°;∵∠CAB=60°,∴∠DAC=90°?60°=30°,∴旋轉(zhuǎn)角的正切值是33故答案為:33【點(diǎn)睛】此題考查等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),點(diǎn)與圓的位置關(guān)系,解直角三角形,解題關(guān)鍵在于作輔助線.三、解答題(共7小題,滿分69分)18、為;點(diǎn)Q的坐標(biāo)為或.【解析】

依據(jù)拋物線的對(duì)稱軸方程可求得b的值,然后將點(diǎn)B的坐標(biāo)代入線可求得c的值,即可求得拋物線的表達(dá)式;由平移后拋物線的頂點(diǎn)在x軸上可求得平移的方向和距離,故此,然后由點(diǎn),軸可得到點(diǎn)Q和P關(guān)于x對(duì)稱,可求得點(diǎn)Q的縱坐標(biāo),將點(diǎn)Q的縱坐標(biāo)代入平移后的解析式可求得對(duì)應(yīng)的x的值,則可得到點(diǎn)Q的坐標(biāo).【詳解】拋物線頂點(diǎn)A的橫坐標(biāo)是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個(gè)單位.平移后拋物線的解析式為,.,點(diǎn)O在PQ的垂直平分線上.又軸,點(diǎn)Q與點(diǎn)P關(guān)于x軸對(duì)稱.點(diǎn)Q的縱坐標(biāo)為.將代入得:,解得:或.點(diǎn)Q的坐標(biāo)為或.【點(diǎn)睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的平移規(guī)律、線段垂直平分線的性質(zhì),發(fā)現(xiàn)點(diǎn)Q與點(diǎn)P關(guān)于x軸對(duì)稱,從而得到點(diǎn)Q的縱坐標(biāo)是解題的關(guān)鍵.19、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點(diǎn)C為圓心,CE長為半徑作⊙C,與BC交于點(diǎn)F,于BC延長線交于點(diǎn)G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設(shè)AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點(diǎn)M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點(diǎn)C為圓心,CE長為半徑作⊙C,與BC交于點(diǎn)F,于BC延長線交于點(diǎn)G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設(shè)AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點(diǎn)M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點(diǎn)E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設(shè)OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當(dāng)d=,即OM=時(shí),AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時(shí).點(diǎn)睛:本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握?qǐng)A的有關(guān)性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識(shí)點(diǎn).20、詳見解析.【解析】

(1)根據(jù)全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性質(zhì)得∠DAC=∠BCA,可證AD∥BC,根據(jù)平行線的性質(zhì)得出∠1=∠1;(1)(3)和(1)的證法完全一樣.先證△ADC≌△CBA得到∠DAC=∠BCA,則DA∥BC,從而∠1=∠1.【詳解】證明:∠1與∠1相等.在△ADC與△CBA中,,∴△ADC≌△CBA.(SSS)∴∠DAC=∠BCA.∴DA∥BC.∴∠1=∠1.②③圖形同理可證,△ADC≌△CBA得到∠DAC=∠BCA,則DA∥BC,∠1=∠1.21、3【解析】試題分析:根據(jù)AB=30,BD=6,AD=8,利用勾股定理的逆定理求證△ABD是直角三角形,再利用勾股定理求出CD的長,然后利用三角形面積公式即可得出答案.試題解析:∵BD3+AD3=63+83=303=AB3,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD=,∴S△ABC=BC?AD=(BD+CD)?AD=×33×8=3,因此△ABC的面積為3.答:△ABC的面積是3.考點(diǎn):3.勾股定理的逆定理;3.勾股定理.22、見解析【解析】

(1)欲證明∠BAC=∠AED,只要證明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再證明四邊形ADEF是平行四邊形,推出DE=AF,即可解決問題;【詳解】證明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四邊形ADEF是平行四邊形,∴DE=AF,∴.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.23、1【解析】試題分析:先進(jìn)行分式的除法運(yùn)算,再進(jìn)行分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論