




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
SpringerNature2021LATEXtemplate
1
arXiv:2304.13618v1[cs.CV]26Apr2023
Non-rigidPointCloudRegistrationfor
MiddleEarDiagnosticswithEndoscopic
OpticalCoherenceTomography
PengLiu1,3*,JonasGolde2,3,Joseph
Morgenstern3,4,SebastianBodenstedt1,ChenpanLi1,Yujia
Hu1,ZhaoyuChen1,EdmundKoch1,2,MarcusNeudert1,4
andStefanieSpeidel1,3
1*TranslationalSurgicalOncology,NationalCenterforTumor
Diseases,Dresden,01307,Germany.
2ClinicalSensoringandMonitoring,TUDresden,Dresden,01307,Germany.
3ElseKr¨onerFreseniusCenter,TUDresden,Dresden,01307,Germany.
4EarResearchCenterDresden,TUDresden,Dresden,01307,Germany.
*Correspondingauthor(s).E-mail(s):peng.liu@nct-dresden.de;
Abstract
Purpose:Middleearinfectionisthemostprevalentin?ammatorydisease,especiallyamongthepediatricpopulation.Currentdiagnos-ticmethodsaresubjectiveanddependonvisualcuesfromanoto-scope,whichislimitedforotologiststoidentifypathology.Toaddressthisshortcoming,endoscopicopticalcoherencetomography(OCT)providesbothmorphologicalandfunctionalin-vivomeasurementsofthemiddleear.However,duetotheshadowofpriorstructures,interpretationofOCTimagesischallengingandtime-consuming.Tofacilitatefastdiagnosisandmeasurement,improvementintheread-abilityofOCTdataisachievedbymergingmorphologicalknowledgefromex-vivomiddleearmodelswithOCTvolumetricdata,sothatOCTapplicationscanbefurtherpromotedindailyclinicalsettings.
SpringerNature2021LATEXtemplate
2Non-rigidPointCloudRegistrationforMiddleEarDiagnostics
Methods:WeproposeC2P-Net:atwo-stagednon-rigidregistra-tionpipelineforcompletetopartialpointclouds,whicharesam-pledfromex-vivoandin-vivoOCTmodels,respectively.Toover-comethelackoflabeledtrainingdata,afastande?ectivegenerationpipelineinBlender3Disdesignedtosimulatemiddleearshapesandextractin-vivonoisyandpartialpointclouds.Results:WeevaluatetheperformanceofC2P-NetthroughexperimentsonbothsyntheticandrealOCTdatasets.TheresultsdemonstratethatC2P-NetisgeneralizedtounseenmiddleearpointcloudsandcapableofhandlingrealisticnoiseandincompletenessinsyntheticandrealOCTdata.Conclusion:Inthiswork,weaimtoenablediagnosisofmiddleearstructureswiththeassistanceofOCTimages.WeproposeC2P-Net:atwo-stagednon-rigidregistrationpipelineforpointcloudstosupporttheinterpretationofin-vivonoisyandpartialOCTimagesforthe?rsttime.Codeisavailableat:/ncttsopublic/c2p-net.
Keywords:MiddleEar,OpticalCoherenceTomography,PointCloud,DeeplearningbasedRegistration
1Introduction
Themiddleearconsistsofthetympanicmembrane(TM)andanair-?lledchambercontainingtheossiclechain(OC)thatconnectstheTMtotheinnerear.Fromafunctionalperspective,themiddleearmatchestheimpedancefromairtothe?uid-?lledinnerear[
1
].Middleeardisorderscontaindeforma-tion,discontinuationofTMandOC,e?usion,andcholesteatomainthemiddleear.Thesemayoccurbecauseofmiddleearinfection(e.g.acuteotitismedia(AOM),chronicotitismedia(COM),otitismediawithe?usion(OME))andtrauma[
2
,
3
].Mostcommonly,seriousandchronicmiddleeardisordermayleadtoconductivehearinglossandinnereardisorder
[4].
Currentmiddleeardiagnosticsmethodsortoolscoveronlyaspectsofthepathologyandcannotdeterminetheoriginandsiteoftransmissionloss,e.g.otoscopy,audiome-try,tympanometry,etc.Asaninnovativeimagetechnology,endoscopicOCTenablestheexaminationofboththemorphologyandfunctionofthemiddleearin-vivobythenon-invasiveacquisitionofdepth-resolvedandhigh-resolutionimages[
5
–
7
].Nevertheless,multiplesourcesofnoise,e.g.theshadowofpre-cedingstructures,reducethequalityofthetargetstructuresfurtherawayfromtheendoscopicprobe,e.g.ossicles.Therefore,thereconstructed3Dmod-elsfromtheOCTvolumetricdataareusuallynoisyanddi?culttointerpret,especiallytheidenti?cationofthedeepermiddleearstructuressuchasincusandstapes(seeFig.
1
).
OuraimistoimprovetheinterpretationoftheOCTvolumetricdatabymergingtheex-vivomiddleearmodelreconstructedfrommicro-ComputedTomography(μCT)scanofisolatedtemporalbonesandthein-vivoOCT
SimulationinBlender3D
non-rigid
rigid
uCTscans
a)
OCTscans
SpringerNature2021LATEXtemplate
Non-rigidPointCloudRegistrationforMiddleEarDiagnostics3
I
II
III
I
II
III
c)
b)
Fig.1:Overviewofdatasamples.Ina),Iistheex-vivotemplatepointcloudreconstructedfromμCTscansontheleft.IIisthesegmentedmiddleearmodel,eachcolorstandsforonestructure.IIIshowsthemodelwithsparselabels.Accordingly,I,IIandIIIinb)presentin-vivoOCTpointcloud,segmentedOCTmodelandlabels.Thesimulationpipelineonthetoplefttakesacompleteex-vivoearpointcloud,performsnon-rigidandrigidsimulation,andproducessyntheticpartialandnoisyin-vivopointcloudshowninc).
model.NotethatasingleμCTmodelwasusedasatemplateand?ttedtoallpatient-speci?cOCTscans.We?rstconvertallex-andin-vivomiddleeardatatopointcloudrepresentationsforeaseof?exiblemanipulationofmid-dleearshapes.Nevertheless,?ndingone-to-onecorrespondencebetweensuchapointcloudpairisstillchallengingduetothenoiseandincompletenessoftheOCTmodel,andthedi?erencebetweenthepatientdataandthetem-plateμCTdata.Totackletheseissues,we?rstemployaneuralnetworkthatsearchesthesparsecorrespondencesforthesourceandtargetpoints,thenapyramiddeformationalgorithmto?tthepointsinanon-rigidfashionbasedonthepredictedcorrespondences.Theneuralnetworkistrainedonrandomlygeneratedsyntheticshapevariantsofthemiddleearthatcontainrandomnoiseandonlypartialpoints.ThisenablesthegeneralizationoftheneuralnetworktonewpatientdataaswellastheadaptiontonoiseandoutliersThemaincontributionsofthisworkarelistedbelow:
1.AgenerationpipelineinBlender3Dthatsimulatessyntheticshapevariantsfromacompleteex-vivomiddleearmodel,andsimulatesnoisyandpartialpointcloudscomparabletoin-vivodata.
2.C2P-Net:atwo-stagednon-rigidregistrationpipelineforpointclouds.ItdemonstratesthatC2P-Netregistersthecompletepointcloudtemplatetopartialpointcloudsofthemiddleeare?ectivelyandrobustly.
SpringerNature2021LATEXtemplate
4Non-rigidPointCloudRegistrationforMiddleEarDiagnostics
2RelatedWork
Inthissection,wereviewmethodsthatanalyze3Dpointcloudsandsolvereg-istrationproblems.Learningthegeometryof3Dpointcloudsisthefoundationofdiverse3Dapplications,butisalsoachallengingtaskduetotheirregularityandasymmetryofpointclouds.Recently,approachesthatfocusonlearningpointfeatureswithneuralnetworkshavebeenwidelyinvestigatedtoovercomesuchissues.Onecategoryofmethodsistoprojectthepointcloudtoaregularrepresentation,e.g.voxelgrids[
8
],2Dimagesfrommulti-views[
9
,
10],
orcom-bined[
11
]that2/3DconvolutionaloperationscanbeperformedontopoftheseintermediatedatainEuclideanspace.Apartfromthese,PointNet
[12]
lever-agesmultilayerperceptron(MLP)toobtainpointwisefeaturesandamax-pooltoaggregateglobalfeaturesbutwithoutlocalinformation.ThisdrawbackisalleviatedbyPointNet++[
13
],whichusesPointNettoaggregatelocalfeaturesinamulti-scalestructure.Inaddition,variousexplicitconvolutionkernelsareapplieddirectlyonthepointcloudstoextractencodings[
14
–16]
inwhichpointfeaturesareextractedbasedonthekernelweights.
Conventionalmethodssolvethepointcloudregistrationtaskasanoptimizationproblemoftransformationparameters.IterativeClosestPoint(ICP)[
17
]iterativelycalculatesarigidtransformationmatrixbasedonupdatedcorrespondencesetfromalastiteration,Non-rigidIterativeClosestPoint(NICP)[
18
]achievesnon-rigidregistrationbyoptimizinganenergyfunc-tionincludinglocalregularisationandsti?ness.CoherentPointDrift(CPD)maximizestheprobabilityofGaussianMixtureModel(GMM)bymovingcoherentGMMcentroidsfromthetwopointclouds.Recently,deeplearning-basedmethodsusingtheaforementionedpointcloudencodingtechniqueshavebeenwidelyinvestigated[
19
–
23
].PointNetLK[
19
]extractssemanticpointcloudfeaturesusingMLP,thensolvesrigidalignmentusingtheLucasandKanadealgorithm[
24
].PR-Net[
20
]followsasimilarwayoffeatureextractionwhileitmapsthefeaturetoregulargridsandde?nestheregistrationtaskasacorrela-tionproblem.RegTR[
21
]andNgeNet[
22
]bothintroduceattentionmechanismstoenablethecommunicationoftheextractedpointcloudfeaturesfromthesourceandtargetandestimateaglobaltransformationfromthepredictedcorrespondenceswithMLPs.Incontrasttothisdirectway,NDP
[23]
decom-posestheglobaltransformationintosub-motionswhichareiterativelyre?nedusingMLPsateachpyramidlevel.Inspiredbythisrecentworkregardingpointcloudanalysisandregistration,weadoptedNgeNet[
22
]andNDP
[23]
asthemaincomponentstoconstructourregistrationpipeline.
3Methods
Thenon-rigidregistrationoftheex-andin-vivomiddleearpointclouds(seeFig.
1
)usingneuralnetworksisrealizedinasupervisedlearningfashion.DuetolackofrealOCTdatawithgroundtruth,andthedi?cultiesof?ndingone-to-onecorrespondencesbetweenthegeneralandex-vivomodelandthenoisyandpartialin-vivomodel,wegeneratedsyntheticin-vivomiddleearpointclouds
SpringerNature2021LATEXtemplate
Non-rigidPointCloudRegistrationforMiddleEarDiagnostics5
basedontheex-vivoμCTmodelusingatwo-stepsimulationpipeline.Forpointcloudregistration,weproposeC2P-Net,whichisatwo-stageregistrationmethod.We?rsttrainaneuralnetworkonthesyntheticsamplestoexplorethecorrespondencealongwithaninitialrigidtransformationmatrix,thenbasedonthis,ahierarchicalalgorithmisperformedtoestimatethenon-rigiddeformation.
3.1SyntheticDataGeneration
WestartwithacompletemiddleearmodelMμCTreconstructedfromμCTvolumeasbasisforthesimulationinBlender3D.Thenon-rigidsimulationisperformedwiththeassistanceoflatticemodi?ersattachedtoeachstructurewithreasonableresolution.Thelatticeverticesareassignedtovariousgroupsaccordingtolength,thickness,andwidthoftheglobalandlocalshapeofastructure.Bytransformingandrotatingvariousverticegroupswithrandomparameterswithboundaryconditions,arandomshapeofastructurecanbegenerated,e.g.arelativelyshortermalleuswithalongerlateralprocess.Thenon-rigidsimulationstepisformulatedasnr=Snr(T,pnr),whereTisthetemplatemiddleear,pnraretheinputparameters,andnristhesimulatednon-rigidshapevariantsofT.Next,armaturemodi?ersareattachedtoeachstructureandconnectedinanend-to-endfashionatthearticulations.Then,rigidsimulationisaccomplishedbytransformingandrotatingthearmaturebones.WedenotetherigidsimulationasSr.Thus,arandomshapevariantofthemiddleearcanbeobtainedwhichisconsideredasthein-vivoearmodelofanewpatient:=Sr(nr,pr).
Inpractice,thein-vivoOCTmodelisusuallynoisyandonlypartiallyvisible,whichlimitstheregistrationmethodsin?ndingaccurateandrobustcorrespondences.Tosimulatetherealdata,weextractrandompartialpatchesforeachstructureoftheshapevariantbyacombinedprobability,whichiscalculatedasthedistanceofeachvertextothesupportpointofeachstructureandrandomGaussiannoise.Additionally,forthesakeofsimulatingincompleteposteriorstructure,e.g.stapes,causedbytheocclusionandshadowfromtheanteriorstructures,e.g.earcanalwall,wedeterminethenumberofpointsoftheposteriorstructuresbythedistancetotheexternalearandarandomfactor.Furthermore,uniformrandomdisplacementsareappliedtotheverticestogeneratethe?nalnoisyandpartialin-vivopointcloudPinv(seeFig.
1
).
3.2C2P-Net
WedelineatethearchitectureofC2P-NetinFig.
2
.Itconsistsoftwocompo-nentsdedicatedtotwostages:initialrigidregistrationandpyramidnon-rigidregistration.Givenanex-vivopointcloudasatemplateextractedfromaμCTmodel:Pexv={xieR3}i=1,2,...,N,andapartialpointcloudofthesimulatedin-vivoshapevariant:Pinv={yjeR3}j=1,2,...,M,weadoptedtheNeighborhood-awareGeometricEncodingNetwork(NgeNet)[
22
]tosolvetheinitialrigidregistrationtask.Thisstageisformulatedas:
CorrespondenceExploration
Shareddecoder
Sharedencoder
exp
KPCo
nv
PConv
exp
K
inp
SpringerNature2021LATEXtemplate
6Non-rigidPointCloudRegistrationforMiddleEarDiagnostics
Crossattention
DeformationEstimation
…
rigid
non-rigid
Fig.2:SchematicarchitectureofC2P-Net.Theinputofthepipelineistheex-vivo(blue)andin-vivo(orange)pointcloud.Toexplorethecorrespondencebetweenthetwoinputs,NgeNetistrainedonsyntheticsamplestoextractthefeaturesforeachpointatdi?erentlevels.Theseareintegratedbyavot-ingalgorithm.Afeaturematchingroutineisperformedtoobtainthesparsecorrespondencesetaswellasarigidtransformationmatrix.Ontopofthepreviousoutputs,NDPmapstheinputpointcloudstosinusoidalspaceanddecomposestheglobalnon-rigiddeformationateachpyramidlevelintosub-motions.Withtheincreaseofsinusoidalfrequency,thenon-rigiddeformationofeachpointiscontinuouslyre?nedateachlevel.Theregisteredpointcloudisshownontherightside.
τ,σ=NgeNet(Pexv,Pinv)where(u,v)eσ(1)
whereτeSE(3)istherigidtransformationmatrixwhichalignsPexvwithPinv,and(u,v)eσisthesparsecorrespondencesetwhereuandvareindicesforpointsinPexvandPinv.Duetothemulti-scalestructureandavotingmech-anismintegratingfeaturesfromdi?erentresolutions,NgeNethandlesnoisewellandpredictscorrespondencerobustly.
Basedonthepreviouspredictedcorrespondencesetandtherigidlyalignedsourceandtargetpointclouds,weemploytheNeuralDeformationPyra-mid(NDP)[
23
]topredictthenon-rigiddeformationofthegivenpointcloudpair.NDPde?nesthenon-rigidregistrationproblemasahierarchicalmotiondecompositionproblem.Ateachpyramidlevel,theinputpointsfromlastlevelaremappedtosinusoidalencodingswithdi?erentfrequencies:Γ(pk-1)=(sin(2k+kepk-1),cos(2k+kepk-1)),kisthecurrentlevelnumber,k0controlstheinitialfrequencyandpk-1isanoutputpointfromthelastlevel.Lowerfrequen-ciesatshallowerlevelsrepresentrigidsub-motion,whilehigherfrequenciesatdeeplevelsemphasizenon-rigiddeformations.Inthisway,asequenceofsub-motionsisestimatedfromrigidtonon-rigid,andthe?naldisplacement?eldisthecombinationofsuchasequence.Formally,wedenotethestageas:
φest=NDPn,m(exv,Pinv,σ)(2)whereexvisthesourcepointcloudPexvtransformedbyτ,nisthenumberofpyramidlayersoftheNDPneuralnetwork,misthemaximaliterationwithinasinglepyramidlayer,andφestisthepredicteddisplacement?elddescribinghoweachpointshouldmovetothetarget.Combinedlossesarecalculatedat
SpringerNature2021LATEXtemplate
Non-rigidPointCloudRegistrationforMiddleEarDiagnostics7
eachiteration,includingcorrespondencelossandregularizationloss,andback-propagatedtoupdatetheweightsofeachMLP.Ofwhich,thecorrespondencelossLCDisde?nedastheChamferdistance(
3
)betweenexvwhichismaskedbythecorrespondenceσandPinv.
CD(A,B)=
IAIyj_BIBIxi_A
1minIxi_yjI+1minIxi_yjI
xi_Ayj_B
LCD=CD(v,Pinv)
(3)
(4)
v={exv[u]I3v:(u,v)eσ}arethemaskedex-vivopointsthathavecorrespondenceinthetargetin-vivopointcloud.
4Evaluation
C2P-Netpredictsadisplacement?eldto?ttheex-vivopointcloudtem-platetothetargetin-vivopointcloudwhichisnoisyandpartial.Attrainingtime,C2P-NetemploysanAdamoptimizerandExpLRschedulerandusessupervisedlearningtolearnonasyntheticdatasetwith20,000in-vivoshapevariantsofthemiddleear.Duringinference,ittakesaround3.5sforC2P-Nettoreacttoanewin-vivoshapeonRTX2070Super.Sincetheneuralnetworkistrainedonsyntheticdata,itiscrucialtoinvestigatethegeneralizationoftheneuralnetworksonunseensamplesaswellastheperformanceonrealOCTdata.Thus,weconducttwoexperimentsonsyntheticdataandrealOCTdatawithvariousmetrics:meandisplacementerror(
5
),Chamferdistance(
3
),andlandmarkserror(
6
).Furthermore,wecompareourresultswithotherpopu-larnon-rigidregistrationmethods,e.g.Non-rigidICP(NICP)andCoherentPointDrift(CPD).
N
MMDE=|φest_φgt|(5)
i
Nisthesizeofthetestdataset,φestistheestimateddisplacement?eldofasample,andφgtisthecorrespondinggroundtruth.
InSilico.Asyntheticdatasetisgeneratedusingthepipelinedescribedinsection
3.1
withthesameboundaryconditions,andthetargetshapevariantsareunseentotheneuralnetworkduringtraining.Foreachtargetshape,weestimatedthedisplacement?eldfortheidenticaltemplatepointcloudusingC2P-Nettrainedon20,000samples.Themeantargetdisplacement?eldforthesyntheticdatasetis1.54mm.Fig.
3a
illustratesthattheneuralnetworktendstopredictthedeformationoftheex-vivopointcloudwithhigheraccuracyifitobtainsmoreinformationaboutthetargetin-vivoOCTpointcloud.Withfewexceptions,Fig.
3b
showswhentheinitialregistrationerrormadebyNgeNetislow,the?nalglobalnon-rigiddisplacement?eldfromNDPtendstobesmall.
meandisplacementerror(mm)
meandisplacementerror(mm)
SpringerNature2021LATEXtemplate
8Non-rigidPointCloudRegistrationforMiddleEarDiagnostics
Table1:Experimentsresultsonsyntheticdata(SYN)andrealOCTdata(REAL),includingmeandisplacementerror(MMDE)[mm],landmarkserror(ML)[mm]andChamferdistance(MCD)[mm]
SYN
REAL
MMDE↓
MCD十
ML↓
ML↓
MCD十
ICP*
2.01
1.85
1.15
4.74
3.03
NICP
461
0.22
0.87
4.39
0.68
CPD
8.79
1.07
0.96
2.17
0.059
C2P-Net(ours)
0.781
0.582
0.424
0.808
2.43
*rigidregistrationmethod(s).
十baselinemethodstendtofallintolocalminimaandignorethegeometry,thoughtheCDislower.
3.0
1.6
1.4
2.5
1.2
2.0
1.0
1.5
0.8
1.0
0.6
0.5
0.4
0.0
0.2
0.300.320.330.340.360.380.390.40
visiblepointsratio
0.250.500.751.001.251.501.752.00
initialregistrationerror(mm)
(a)
(b)
Fig.3:a)showstherelationbetweentheMDEofsyntheticsamplesandthevisiblepointsratio,whichiscalculatedastheratiobetweenthepointnum-berofatargetpointcloudtothecorrespondinggroundtruthpointcloud:IPinvI/II.Thedecreasingtrendshowsthatwithmorepointsavailableinthetargetin-vivopointclouds,theneuralnetworktendstopredictbetterdefor-mation.b)depictstheMDEtotheinitialrigidregistrationerrorwhichisproducedbytheNgeNet.Thebettertheinitialrigidregistrationandcorre-
spondencesetpredictedbyNgeNet,thelowertheglobalnon-rigidregistrationerrorfromNDPbecomes.
InVivo.ArealOCTdatasetwith9samplesofthehumanmiddleearwascollectedwithahandheldOCTimagingsystem[
5
]andsegmentedmanuallybysurgeonswithin3DSliceralongwithasetofsparselandmarksforeachstructureofasample(seeFig.
1
).Sincethereisnogroundtruthcorrespon-denceavailableforthesourceandtargetpointcloudstocalculateMMDE,weintroduceanothermetricbasedonthesparselandmarks:
īAРNīAРAРDC2P-Net(ours)
SpringerNature2021LATEXtemplate
SYN
RE2j1
RE2j2
Non-rigidPointCloudRegistrationforMiddleEarDiagnostics9
Fig.4:RegistrationresultsofbaselinemodelsandC2P-Netonsynthetic(SYN)andrealOCTsamples(REAL).Bluepointcloudsarethedeformedex-vivoearmodels,i.e.theshapetemplate,calculatedbyalltheinvestigatedmethods.Theorangepointcloudsstandfortheregistrationtarget,i.e.in-vivopointclouds.Fromthevisualization,wecanseebaselinenon-rigidmethods,NICPandCPD,tendtosqueezethepointsfromtheex-vivotemplatelargelytomatchthetargetpointclouds,sincetheyonlyfocusonthepositionoflocalpoints,whileC2P-Netretainstheglobalgeometryofthemiddleearduetothelearnedcorrespondenceknowledgebetweentheex-andin-vivopointclouds.
ML=1min|li,k_lj,k|k=1,2,...,K(6)
ILexvIli,k_Lexvlj,k_Linv
whereLexvarethelandmarksontheex-vivopointcloudfromμCT,whichisalsomarkedmanually,Linvarethecorrespondinglandmarksonthetargetin-vivopointcloud,andthelandmarkpointsbelongtoKdi?erentsegmentations. Tab.
1
itemizestheregistrationresultsofC2P-Netandbaselinemodelsonbothdatasets.WecanobserveourregistrationpipelineoutperformstheothermethodsintermsofMMDEandML.However,baselinemodelstendtohavesmallerMCD,whichmeansthesourcepointcloudsaredeformedlargelyto?tthetargetregardlessoftheanatomicalgeometryofthemiddleear.Furthermore,thisissueisdemonstratedvisuallyinFig.
4
,whichdepictsseveralregistrationresultsfromC2P-NetandbaselinemodelsonrealOCTsamples.Hence,itismanifestedthatC2P-Netisabletoregisterthepartialtargetpointcloudwithoutlosingtheunderlyinggeometryofsourcepointclouds,whichisthecriticalinformationclinicianswanttoobtainwithregistration.Onthe
SpringerNature2021LATEXtemplate
10Non-rigidPointCloudRegistrationforMiddleEarDiagnostics
contrary,thebaselinemodelsonlyfocusonthespatialpositionoflocalpointsregardlessoftheneighbouringandglobalgeometryofthemiddleeartemplate.
5Conclusion
Inthiswork,weproposetoimprovetheinterpretationofOCTdataforsurgicaldiagnosisbyfusingtheknowledgefromex-vivoandgeneralμCTdatawiththein-vivonoisyandincompleteOCTdata.Tothisend,weproposeC2P-NetwhichisbasedonNgeNetandNeuralDeformationPyramid.Ittakestheex-andin-vivo3Dpointcloudsasinputandexploresthesparsecorrespondencebetweenthetwo,thenalignstheminanon-rigidfashion.Duetothelackoftrainingdata,afastande?ectivesyntheticsimulationpipelinewasdesignedusingBlender3D,whichproducesnoisyandpartialpointcloudsasseenin-vivobasedontherandomlygeneratedshapevariantsofthemiddleear.Ourneuralnetworkwastrainedbasedon20,000syntheticsamples,andittookaround3.5stopredictthedisplacement?eldforagivenin-vivopointcloudatinferencetime.
ToassesstheperformanceofC2P-Net,experimentsonsyntheticandrealOCTdatasetswerecarriedout.SincetherealOCTdataisnoisyandincom-plete,weinvestigatedvariousmetricsincludingmeandisplacementerror,landmarkerror,andChamferdistanceandcomparedC2P-Nettotheotherbaselinemodelsfrombothstatisticsandgeometryaspects.FromTab.
1
andFig.
4
,wecanseethatC2P-NetisabletodealwiththepartialOCTdataandretaintheanatomicalstructureduringnon-rigidregistration,whileothernon-rigidmethodsdonotunderstandtheglobalgeometryofthepointcloudsandfocusonlyonlocalpoints.
Futureworkwillfocusonimprovingregistrationaccuracy.Thiscanbeachievedbyimprovingthesimulationpipelinewithrealisticnoisetofurtherbridgethegapbetweensyntheticandrealdata.Furthermore,thesegmentationinformationcanbeemployedbythenetworktoimprovethepredictionofcorrespondences.Apartfromthis,inferencetimecanbefurtherdecreasedbyexploringtheoptimalcon?gurationofthenetworkfortheOCTsamples.
Acknowledgments.FundedbytheElseKr¨onerFreseniusCentreforDigital
Health.
References
[1]Zwislocki,J.:Normalfunctionofthemiddleearanditsmeasurement.
Audiology21(1),4–14(1982)
[2]Won,J.,Monroy,G.L.,Dsouza,R.I.,Spillman,D.R.,McJunkin,J.,
Porter,R.G.,Shi,J.,Aksamitiene,E.,Sherwood,M.,Stiger,L.,Boppart,S.A.:HandheldBriefcaseOpticalCoherenceTomographywithReal-TimeMachineLearningClassi?erforMiddleEarInfections.Biosensors
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報(bào)書課題進(jìn)度
- 前臺薪資合同范本模板
- 廈門 代建合同范本
- 公司頂層設(shè)計(jì)合同范本
- 傷殘賠償合同范本
- 品牌使用授權(quán)合同范本
- 保安與個人合同范本
- 廠房墻面翻新合同范例
- 樂器維修采購合同范例
- 合同范本合作期限
- 品管圈PDCA改善案例-降低住院患者跌倒發(fā)生率
- 財(cái)務(wù)會計(jì)(對外經(jīng)濟(jì)貿(mào)易大學(xué))知到智慧樹章節(jié)測試課后答案2024年秋對外經(jīng)濟(jì)貿(mào)易大學(xué)
- 分布式計(jì)算平臺設(shè)計(jì)與實(shí)現(xiàn)
- 護(hù)理總帶教老師講課
- 護(hù)膚課件教學(xué)課件
- 中小學(xué)校財(cái)務(wù)制度知識培訓(xùn)
- GB/T 12996-2024電動輪椅車
- T-JYBZ 020-2022《校園急救設(shè)施設(shè)備配備規(guī)范(試行)》
- 認(rèn)識誠信課件教學(xué)課件
- 人教版物理八年級下冊 專項(xiàng)訓(xùn)練卷 (一)力、運(yùn)動和力(含答案)
- 房地產(chǎn)市場報(bào)告-印度尼西亞經(jīng)濟(jì)及地產(chǎn)市場簡介 202411
評論
0/150
提交評論