2022-2023學年廣西南寧市第二十一中學中考猜題數(shù)學試卷含解析_第1頁
2022-2023學年廣西南寧市第二十一中學中考猜題數(shù)學試卷含解析_第2頁
2022-2023學年廣西南寧市第二十一中學中考猜題數(shù)學試卷含解析_第3頁
2022-2023學年廣西南寧市第二十一中學中考猜題數(shù)學試卷含解析_第4頁
2022-2023學年廣西南寧市第二十一中學中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.將拋物線向上平移3個單位,再向左平移2個單位,那么得到的拋物線的解析式為()A. B. C. D.2.下列運算正確的是()A.(a2)3=a5 B. C.(3ab)2=6a2b2 D.a(chǎn)6÷a3=a23.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.24.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或2895.實數(shù)a在數(shù)軸上的位置如圖所示,則下列說法不正確的是()A.a(chǎn)的相反數(shù)大于2B.a(chǎn)的相反數(shù)是2C.|a|>2D.2a<06.若m,n是一元二次方程x2﹣2x﹣1=0的兩個不同實數(shù)根,則代數(shù)式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.17.實數(shù)a,b,c,d在數(shù)軸上的對應點的位置如圖所示,下列結(jié)論①a<b;②|b|=|d|;③a+c=a;④ad>0中,正確的有()A.4個 B.3個 C.2個 D.1個8.如圖所示的幾何體的主視圖是()A. B. C. D.9.實數(shù)a,b,c在數(shù)軸上對應點的位置大致如圖所示,O為原點,則下列關系式正確的是()A.a(chǎn)﹣c<b﹣c B.|a﹣b|=a﹣b C.a(chǎn)c>bc D.﹣b<﹣c10.近兩年,中國倡導的“一帶一路”為沿線國家創(chuàng)造了約180000個就業(yè)崗位,將180000用科學記數(shù)法表示為()A.1.8×105 B.1.8×104 C.0.18×106 D.18×10411.在剛過去的2017年,我國整體經(jīng)濟實力躍上了一個新臺階,城鎮(zhèn)新增就業(yè)1351萬人,數(shù)據(jù)“1351萬”用科學記數(shù)法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×10812.如圖,將△ABC繞點C順時針旋轉(zhuǎn),點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10cm.14.計算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,歸納各計算結(jié)果中的個位數(shù)字規(guī)律,猜測22019﹣1的個位數(shù)字是_____.15.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.16.如圖放置的正方形,正方形,正方形,…都是邊長為的正方形,點在軸上,點,…,都在直線上,則的坐標是__________,的坐標是______.17.(2016遼寧省沈陽市)如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.18.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(點A在點B的左側(cè)),直線l與拋物線交于A,C兩點,其中點C的橫坐標為1.(1)求A,B兩點的坐標及直線AC的函數(shù)表達式;(1)P是線段AC上的一個動點(P與A,C不重合),過P點作y軸的平行線交拋物線于點E,求△ACE面積的最大值;(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點D,直線AC與y軸交于點Q,點M為直線PE上一動點,則在x軸上是否存在一點N,使四邊形DMNQ的周長最?。咳舸嬖?,求出這個最小值及點M,N的坐標;若不存在,請說明理由.(4)點H是拋物線上的動點,在x軸上是否存在點F,使A、C、F、H四個點為頂點的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點坐標;如果不存在,請說明理由.20.(6分)如圖,已知:△ABC中,AB=AC,M是BC的中點,D、E分別是AB、AC邊上的點,且BD=CE.求證:MD=ME.21.(6分)如圖,AC是⊙O的直徑,點P在線段AC的延長線上,且PC=CO,點B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動點,⊙O的半徑為5cm時,當弧CD長為時,四邊形ADPB為菱形,當弧CD長為時,四邊形ADCB為矩形.22.(8分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點P為優(yōu)弧上一點(點P不與A,B重合),將圖形沿BP折疊,得到點A的對稱點A′.發(fā)現(xiàn):(1)點O到弦AB的距離是,當BP經(jīng)過點O時,∠ABA′=;(2)當BA′與⊙O相切時,如圖2,求折痕的長.拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點P(不與點M,N重合)為半圓上一點,將圓形沿NP折疊,分別得到點M,O的對稱點A′,O′,設∠MNP=α.(1)當α=15°時,過點A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關系,并說明理由;(2)如圖4,當α=°時,NA′與半圓O相切,當α=°時,點O′落在上.(3)當線段NO′與半圓O只有一個公共點N時,直接寫出β的取值范圍.23.(8分)我國古代數(shù)學著作《增刪算法統(tǒng)宗》記載“官兵分布”問題:“一千官軍一千布,一官四疋無零數(shù),四軍才分布一疋,請問官軍多少數(shù).”其大意為:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.問官和兵各幾人?24.(10分)為了了解同學們每月零花錢的數(shù)額,校園小記者隨機調(diào)查了本校部分同學,根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.調(diào)查結(jié)果統(tǒng)計表組別分組(單位:元)人數(shù)A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bEx≥1202請根據(jù)以上圖表,解答下列問題:填空:這次被調(diào)查的同學共有人,a+b=,m=;求扇形統(tǒng)計圖中扇形C的圓心角度數(shù);該校共有學生1000人,請估計每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).25.(10分)在“雙十一”購物街中,某兒童品牌玩具專賣店購進了兩種玩具,其中類玩具的金價比玩具的進價每個多元.經(jīng)調(diào)查發(fā)現(xiàn):用元購進類玩具的數(shù)量與用元購進類玩具的數(shù)量相同.求的進價分別是每個多少元?該玩具店共購進了兩類玩具共個,若玩具店將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得的利潤不少于元,則該淘寶專賣店至少購進類玩具多少個?26.(12分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.27.(12分)已知關于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由;如果△ABC是等邊三角形,試求這個一元二次方程的根.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

直接根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】將拋物線向上平移3個單位,再向左平移2個單位,根據(jù)拋物線的平移規(guī)律可得新拋物線的解析式為,故答案選A.2、B【解析】分析:本題考察冪的乘方,同底數(shù)冪的乘法,積的乘方和同底數(shù)冪的除法.解析:,故A選項錯誤;a3·a=a4故B選項正確;(3ab)2=9a2b2故C選項錯誤;a6÷a3=a3故D選項錯誤.故選B.3、B【解析】

首先求得AB的中點D的坐標,然后求得經(jīng)過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標,再求得交點與D之間的距離即可.【詳解】AB的中點D的坐標是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點的坐標是(3,-3).則這個圓的半徑的最小值是:=.

故選:B【點睛】本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關鍵.4、D【解析】

分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【詳解】解:①當弦AB和CD在圓心同側(cè)時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當弦AB和CD在圓心異側(cè)時,如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.【點睛】本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關鍵是注意掌握數(shù)形結(jié)合思想與分類討論思想的應用,小心別漏解.5、B【解析】試題分析:由數(shù)軸可知,a<-2,A、a的相反數(shù)>2,故本選項正確,不符合題意;B、a的相反數(shù)≠2,故本選項錯誤,符合題意;C、a的絕對值>2,故本選項正確,不符合題意;D、2a<0,故本選項正確,不符合題意.故選B.考點:實數(shù)與數(shù)軸.6、B【解析】

把m代入一元二次方程,可得,再利用兩根之和,將式子變形后,整理代入,即可求值.【詳解】解:∵若,是一元二次方程的兩個不同實數(shù)根,∴,∴∴故選B.【點睛】本題考查了一元二次方程根與系數(shù)的關系,及一元二次方程的解,熟記根與系數(shù)關系的公式.7、B【解析】

根據(jù)數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義,可得答案.【詳解】解:由數(shù)軸,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正確;②|b|=|d|,故②正確;③a+c=a,故③正確;④ad<0,故④錯誤;故選B.【點睛】本題考查了實數(shù)與數(shù)軸,利用數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義是解題關鍵.8、A【解析】

找到從正面看所得到的圖形即可.【詳解】解:從正面可看到從左往右2列一個長方形和一個小正方形,故選A.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.9、A【解析】

根據(jù)數(shù)軸上點的位置確定出a,b,c的范圍,判斷即可.【詳解】由數(shù)軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點睛】考查了實數(shù)與數(shù)軸,弄清數(shù)軸上點表示的數(shù)是解本題的關鍵.10、A【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】180000=1.8×105,故選A.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.11、B【解析】

根據(jù)科學記數(shù)法進行解答.【詳解】1315萬即13510000,用科學記數(shù)法表示為1.351×107.故選擇B.【點睛】本題主要考查科學記數(shù)法,科學記數(shù)法表示數(shù)的標準形式是a×10n(1≤│a│<10且n為整數(shù)).12、D【解析】

由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),解題的關鍵是掌握旋轉(zhuǎn)的性質(zhì):①對應點到旋轉(zhuǎn)中心的距離相等.②對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或【解析】

作PH⊥CD,垂足為H,設運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設P,Q兩點從出發(fā)經(jīng)過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發(fā)經(jīng)過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【點睛】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關鍵.14、1【解析】

觀察給出的數(shù),發(fā)現(xiàn)個位數(shù)是循環(huán)的,然后再看2019÷4的余數(shù),即可求解.【詳解】由給出的這組數(shù)21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,個位數(shù)字1,3,1,5循環(huán)出現(xiàn),四個一組,2019÷4=504…3,∴22019﹣1的個位數(shù)是1.故答案為1.【點睛】本題考查數(shù)的循環(huán)規(guī)律,確定循環(huán)規(guī)律,找準余數(shù)是解題的關鍵.15、【解析】

連接,根據(jù)勾股定理知,可得當時,即線段最短,然后由勾股定理即可求得答案.【詳解】連接.∵是的切線,∴;∴,∴當時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【點睛】本題考查了切線的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關鍵.16、【解析】

先求出OA的長度,然后利用含30°的直角三角形的性質(zhì)得到點D的坐標,探索規(guī)律,從而得到的坐標即可.【詳解】分別過點作y軸的垂線交y軸于點,∵點B在上設∴同理,都是含30°的直角三角形∵,∴同理,點的橫坐標為縱坐標為故點的坐標為故答案為:;.【點睛】本題主要考查含30°的直角三角形的性質(zhì),找到點的坐標規(guī)律是解題的關鍵.17、或.【解析】由圖可知,在△OMN中,∠OMN的度數(shù)是一個定值,且∠OMN不為直角.故當∠ONM=90°或∠MON=90°時,△OMN是直角三角形.因此,本題需要按以下兩種情況分別求解.(1)當∠ONM=90°時,則DN⊥BC.過點E作EF⊥BC,垂足為F.(如圖)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位線,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,F(xiàn)C=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位線,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)當∠MON=90°時,則DN⊥ME.過點E作EF⊥BC,垂足為F.(如圖)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.綜上所述,DO的長是或.故本題應填寫:或.點睛:在解決本題的過程中,難點在于對直角三角形中直角的分類討論;關鍵點是通過等角代換將一個在原直角三角形中不易求得的三角函數(shù)值轉(zhuǎn)換到一個容易求解的直角三角形中進行求解.另外,本題也可以用相似三角形的方法進行求解,不過利用銳角三角函數(shù)相對簡便.18、【解析】

利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質(zhì)、勾股定理、直角三角形斜邊中線的性質(zhì)、銳角三角函數(shù)等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x﹣1;(1)△ACE的面積最大值為;(3)M(1,﹣1),N(,0);(4)滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),F(xiàn)3(4+,0),F(xiàn)4(4﹣,0).【解析】

(1)令拋物線y=x1-1x-3=0,求出x的值,即可求A,B兩點的坐標,根據(jù)兩點式求出直線AC的函數(shù)表達式;

(1)設P點的橫坐標為x(-1≤x≤1),求出P、E的坐標,用x表示出線段PE的長,求出PE的最大值,進而求出△ACE的面積最大值;

(3)根據(jù)D點關于PE的對稱點為點C(1,-3),點Q(0,-1)點關于x軸的對稱點為M(0,1),則四邊形DMNQ的周長最小,求出直線CM的解析式為y=-1x+1,進而求出最小值和點M,N的坐標;

(4)結(jié)合圖形,分兩類進行討論,①CF平行x軸,如圖1,此時可以求出F點兩個坐標;②CF不平行x軸,如題中的圖1,此時可以求出F點的兩個坐標.【詳解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);將C點的橫坐標x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直線AC的函數(shù)解析式是(1)設P點的橫坐標為x(﹣1≤x≤1),則P、E的坐標分別為:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P點在E點的上方,∴當時,PE的最大值△ACE的面積最大值(3)D點關于PE的對稱點為點C(1,﹣3),點Q(0,﹣1)點關于x軸的對稱點為K(0,1),連接CK交直線PE于M點,交x軸于N點,可求直線CK的解析式為,此時四邊形DMNQ的周長最小,最小值求得M(1,﹣1),(4)存在如圖1,若AF∥CH,此時的D和H點重合,CD=1,則AF=1,于是可得F1(1,0),F(xiàn)1(﹣3,0),如圖1,根據(jù)點A和F的坐標中點和點C和點H的坐標中點相同,再根據(jù)|HA|=|CF|,求出綜上所述,滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),,.【點睛】屬于二次函數(shù)綜合題,考查二次函數(shù)與軸的交點坐標,待定系數(shù)法求一次函數(shù)解析式,二次函數(shù)的最值以及平行四邊形的性質(zhì)等,綜合性比較強,難度較大.20、證明見解析.【解析】試題分析:根據(jù)等腰三角形的性質(zhì)可證∠DBM=∠ECM,可證△BDM≌△CEM,可得MD=ME,即可解題.試題解析:證明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中點,∴BM=CM.在△BDM和△CEM中,∵,∴△BDM≌△CEM(SAS).∴MD=ME.考點:1.等腰三角形的性質(zhì);2.全等三角形的判定與性質(zhì).21、(1)證明見解析(2)cm,cm【解析】【分析】(1)連接OB,要證明PB是切線,只需證明OB⊥PB即可;(2)利用菱形、矩形的性質(zhì),求出圓心角∠COD即可解決問題.【詳解】(1)如圖連接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切線;(2)①的長為cm時,四邊形ADPB是菱形,∵四邊形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的長=cm;②當四邊形ADCB是矩形時,易知∠COD=120°,∴的長=cm,故答案為:cm,cm.【點睛】本題考查了圓的綜合題,涉及到切線的判定、矩形的性質(zhì)、菱形的性質(zhì)、弧長公式等知識,準確添加輔助線、靈活應用相關知識解決問題是關鍵.22、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】

發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點O到AB的距離;利用銳角三角函數(shù)的定義及軸對稱性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進而求出∠OBP=30°.過點O作OG⊥BP,垂足為G,容易求出OG、BG的長,根據(jù)垂徑定理就可求出折痕的長.拓展:(1)過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當NA′與半圓相切時,可知ON⊥A′N,則可知α=45°,當O′在時,連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點A′的位置不同得到線段NO′與半圓O只有一個公共點N時α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現(xiàn):(1)過點O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點A的對稱點A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長為2拓展:(1)相切.分別過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當NA′與半圓O相切時,則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當O′在上時,連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點P,M不重合,∴α>0,由(2)可知當α增大到30°時,點O′在半圓上,∴當0°<α<30°時點O′在半圓內(nèi),線段NO′與半圓只有一個公共點B;當α增大到45°時NA′與半圓相切,即線段NO′與半圓只有一個公共點B.當α繼續(xù)增大時,點P逐漸靠近點N,但是點P,N不重合,∴α<90°,∴當45°≤α<90°線段BO′與半圓只有一個公共點B.綜上所述0°<α<30°或45°≤α<90°.【點睛】本題考查了切線的性質(zhì)、垂徑定理、勾股定理、三角函數(shù)的定義、30°角所對的直角邊等于斜邊的一半、翻折問題等知識,正確的作出輔助線是解題的關鍵.23、官有200人,兵有800人【解析】

設官有x人,兵有y人,根據(jù)1000官兵正好分1000匹布,即可得出關于x,y的二元一次方程組,解之即可得出結(jié)論.【詳解】解:設官有x人,兵有y人,依題意,得:,解得:.答:官有200人,兵有800人.【點睛】本題主要考查二元一次方程組的應用,根據(jù)題意列出二元一次方程組是解題的關鍵.24、50;28;8【解析】【分析】1)用B組的人數(shù)除以B組人數(shù)所占的百分比,即可得這次被調(diào)查的同學的人數(shù),利用A組的人數(shù)除以這次被調(diào)查的同學的人數(shù)即可求得m的值,用總?cè)藬?shù)減去A、B、E的人數(shù)即可求得a+b的值;(2)先求得C組人數(shù)所占的百分比,乘以360°即可得扇形統(tǒng)計圖中扇形的圓心角度數(shù);(3)用總?cè)藬?shù)1000乘以每月零花錢的數(shù)額在范圍的人數(shù)的百分比即可求得答案.【詳解】解:(1)50,28,8;(2)(1-8%-32%

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論