2023屆貴州省貴陽(yáng)市高三四模數(shù)學(xué)試題試卷_第1頁(yè)
2023屆貴州省貴陽(yáng)市高三四模數(shù)學(xué)試題試卷_第2頁(yè)
2023屆貴州省貴陽(yáng)市高三四模數(shù)學(xué)試題試卷_第3頁(yè)
2023屆貴州省貴陽(yáng)市高三四模數(shù)學(xué)試題試卷_第4頁(yè)
2023屆貴州省貴陽(yáng)市高三四模數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023屆貴州省貴陽(yáng)市高三四模數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若,則a的取值范圍為()A. B. C. D.2.已知隨機(jī)變量服從正態(tài)分布,且,則()A. B. C. D.3.若直線經(jīng)過(guò)拋物線的焦點(diǎn),則()A. B. C.2 D.4.正三棱錐底面邊長(zhǎng)為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.5.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.6.拋物線C:y2=2px的焦點(diǎn)F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.7.已知,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn),則正實(shí)數(shù)的取值范圍為()A. B. C. D.8.國(guó)務(wù)院發(fā)布《關(guān)于進(jìn)一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費(fèi)使用效益的意見(jiàn)》中提出,要優(yōu)先落實(shí)教育投入.某研究機(jī)構(gòu)統(tǒng)計(jì)了年至年國(guó)家財(cái)政性教育經(jīng)費(fèi)投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯(cuò)誤的是()A.隨著文化教育重視程度的不斷提高,國(guó)在財(cái)政性教育經(jīng)費(fèi)的支出持續(xù)增長(zhǎng)B.年以來(lái),國(guó)家財(cái)政性教育經(jīng)費(fèi)的支出占比例持續(xù)年保持在以上C.從年至年,中國(guó)的總值最少增加萬(wàn)億D.從年到年,國(guó)家財(cái)政性教育經(jīng)費(fèi)的支出增長(zhǎng)最多的年份是年9.函數(shù)與在上最多有n個(gè)交點(diǎn),交點(diǎn)分別為(,……,n),則()A.7 B.8 C.9 D.1010.黨的十九大報(bào)告明確提出:在共享經(jīng)濟(jì)等領(lǐng)域培育增長(zhǎng)點(diǎn)、形成新動(dòng)能.共享經(jīng)濟(jì)是公眾將閑置資源通過(guò)社會(huì)化平臺(tái)與他人共享,進(jìn)而獲得收入的經(jīng)濟(jì)現(xiàn)象.為考察共享經(jīng)濟(jì)對(duì)企業(yè)經(jīng)濟(jì)活躍度的影響,在四個(gè)不同的企業(yè)各取兩個(gè)部門進(jìn)行共享經(jīng)濟(jì)對(duì)比試驗(yàn),根據(jù)四個(gè)企業(yè)得到的試驗(yàn)數(shù)據(jù)畫出如下四個(gè)等高條形圖,最能體現(xiàn)共享經(jīng)濟(jì)對(duì)該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.11.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為()A.9 B.10 C.18 D.2012.已知函數(shù),其中表示不超過(guò)的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)與函數(shù),在公共點(diǎn)處有共同的切線,則實(shí)數(shù)的值為_(kāi)_____.14.若函數(shù)為偶函數(shù),則.15.已知數(shù)列滿足,且恒成立,則的值為_(kāi)___________.16.在中,,是的角平分線,設(shè),則實(shí)數(shù)的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.18.(12分)已知,其中.(1)當(dāng)時(shí),設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.19.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.20.(12分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點(diǎn)將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個(gè)四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大?。虎谠诶釶C上存在點(diǎn)M,滿足,使得直線AM與平面PBC所成的角為,求的值.21.(12分)已知在中,角,,的對(duì)邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.22.(10分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當(dāng)時(shí),恒有成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.2、C【解析】

根據(jù)在關(guān)于對(duì)稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機(jī)變量服從正態(tài)分布,則.3、B【解析】

計(jì)算拋物線的交點(diǎn)為,代入計(jì)算得到答案.【詳解】可化為,焦點(diǎn)坐標(biāo)為,故.故選:.【點(diǎn)睛】本題考查了拋物線的焦點(diǎn),屬于簡(jiǎn)單題.4、D【解析】

由側(cè)棱與底面所成角及底面邊長(zhǎng)求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長(zhǎng)為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點(diǎn)睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.5、C【解析】

由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,如圖:由底面邊長(zhǎng)可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問(wèn)題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.6、A【解析】

先由題和拋物線的性質(zhì)求得點(diǎn)P的坐標(biāo)和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點(diǎn)F1,0,準(zhǔn)線與x軸交點(diǎn)F'(-1,0),雙曲線半焦距c=1,設(shè)點(diǎn)Q(-1,y)ΔFPQ是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形,即PF所以PQ⊥拋物線的準(zhǔn)線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點(diǎn)睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關(guān)鍵,屬于中檔題.7、B【解析】

先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn)即為三個(gè)最值點(diǎn),解出,,再建立不等式求出的范圍,進(jìn)而求得的范圍.【詳解】解:令,解得對(duì)稱軸,,又函數(shù)在區(qū)間恰有個(gè)極值點(diǎn),只需解得.故選:.【點(diǎn)睛】本題考查利用向量的數(shù)量積運(yùn)算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問(wèn)題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.8、C【解析】

觀察圖表,判斷四個(gè)選項(xiàng)是否正確.【詳解】由表易知、、項(xiàng)均正確,年中國(guó)為萬(wàn)億元,年中國(guó)為萬(wàn)億元,則從年至年,中國(guó)的總值大約增加萬(wàn)億,故C項(xiàng)錯(cuò)誤.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表,正確認(rèn)識(shí)圖表是解題基礎(chǔ).9、C【解析】

根據(jù)直線過(guò)定點(diǎn),采用數(shù)形結(jié)合,可得最多交點(diǎn)個(gè)數(shù),然后利用對(duì)稱性,可得結(jié)果.【詳解】由題可知:直線過(guò)定點(diǎn)且在是關(guān)于對(duì)稱如圖通過(guò)圖像可知:直線與最多有9個(gè)交點(diǎn)同時(shí)點(diǎn)左、右邊各四個(gè)交點(diǎn)關(guān)于對(duì)稱所以故選:C【點(diǎn)睛】本題考查函數(shù)對(duì)稱性的應(yīng)用,數(shù)形結(jié)合,難點(diǎn)在于正確畫出圖像,同時(shí)掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.10、D【解析】根據(jù)四個(gè)列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟(jì)活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟(jì)對(duì)該部門的發(fā)展有顯著效果,故選D.11、B【解析】

由已知可得函數(shù)f(x)的周期與對(duì)稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對(duì)稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時(shí),f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個(gè)交點(diǎn),即函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)為10.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.12、C【解析】

根據(jù)表示不超過(guò)的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過(guò)的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C【點(diǎn)睛】本題考查對(duì)題干的理解,屬于函數(shù)新定義問(wèn)題,可作出圖象分析性質(zhì),屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

函數(shù)的定義域?yàn)?,求出?dǎo)函數(shù),利用曲線與曲線公共點(diǎn)為由于在公共點(diǎn)處有共同的切線,解得,,聯(lián)立解得的值.【詳解】解:函數(shù)的定義域?yàn)椋?,,設(shè)曲線與曲線公共點(diǎn)為,由于在公共點(diǎn)處有共同的切線,∴,解得,.由,可得.聯(lián)立,解得.故答案為:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,切線方程的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.14、1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點(diǎn):函數(shù)的奇偶性.【方法點(diǎn)晴】本題考查導(dǎo)函數(shù)的奇偶性以及邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,?。?5、【解析】

易得,所以是等差數(shù)列,再利用等差數(shù)列的通項(xiàng)公式計(jì)算即可.【詳解】由已知,,因,所以,所以數(shù)列是以為首項(xiàng),3為公差的等差數(shù)列,故,所以.故答案為:【點(diǎn)睛】本題考查由遞推數(shù)列求數(shù)列中的某項(xiàng),考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.16、【解析】

設(shè),,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設(shè),,,由得:,化簡(jiǎn)得,由于,故.故答案為:【點(diǎn)睛】本題考查了解三角形綜合,考查了學(xué)生轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)極大值為;極小值為;(2)見(jiàn)解析【解析】

(1)對(duì)函數(shù)求導(dǎo),進(jìn)而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域?yàn)?,所以當(dāng)時(shí),;當(dāng)時(shí),,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因?yàn)?所以,又,則,因?yàn)?且在上單調(diào)遞減,所以,故.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關(guān)鍵,屬于難題.18、(1)極大值,無(wú)極小值;(2).(3)見(jiàn)解析【解析】

(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導(dǎo),再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問(wèn)題得以解決;(3)取得到,取,可得,累加和根據(jù)對(duì)數(shù)的運(yùn)算性和放縮法即可證明.【詳解】解:(1)當(dāng)時(shí),設(shè)函數(shù),則令,解得當(dāng)時(shí),,當(dāng)時(shí),所以在上單調(diào)遞增,在上單調(diào)遞減所以當(dāng)時(shí),函數(shù)取得極大值,即極大值為,無(wú)極小值;(2)因?yàn)?,所以,因?yàn)樵趨^(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當(dāng)時(shí),在區(qū)間上恒成立,當(dāng)時(shí),,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)由(2)可知當(dāng)時(shí),函數(shù)在區(qū)間上遞增,所以,即,取,則.所以所以【點(diǎn)睛】此題考查了參數(shù)的取值范圍以及恒成立的問(wèn)題,以及不等式的證明,構(gòu)造函數(shù)是關(guān)鍵,屬于較難題.19、(1)證明見(jiàn)解析;(2).【解析】

(1)要證明平面平面,只需證明平面即可;(2)取的中點(diǎn)D,連接BD,以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,分別計(jì)算平面的法向量為與平面的法向量為,利用夾角公式計(jì)算即可.【詳解】(1)在中,,所以,即.因?yàn)?,,,所?所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點(diǎn)D,連接BD,則.以B為原點(diǎn),以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點(diǎn)睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問(wèn)題,在利用向量法時(shí),關(guān)鍵是點(diǎn)的坐標(biāo)要寫準(zhǔn)確,本題是一道中檔題.20、Ⅰ詳見(jiàn)解析;Ⅱ①,②或.【解析】

Ⅰ可以通過(guò)已知證明出平面PAB,這樣就可以證明出;Ⅱ以點(diǎn)A為坐標(biāo)原點(diǎn),分別以AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系,可以求出相應(yīng)點(diǎn)的坐標(biāo),求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大??;求出平面PBC的法向量,利用線面角的公式求出的值.【詳解】證明:Ⅰ在圖1中,,,為平行四邊形,,,,當(dāng)沿AD折起時(shí),,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以點(diǎn)A為坐標(biāo)原點(diǎn),分別以AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系,由于平面ABCD則0,,0,,1,,0,,1,1,,1,,0,,設(shè)平面PBC的法向量為y,,則,取,得0,,設(shè)平面PCD的法向量b,,則,取,得1,,設(shè)二面角的大小為,可知為鈍角,則,.二面角的大小為.設(shè)AM與面PBC所成角為,0,,1,,,,平面PBC的法向量0,,直線AM與平面PBC所成的角為,,解得或.【點(diǎn)睛】本題考查了利用線面垂直證明線線垂直,考查了利用向量數(shù)量積,求二面角的大小以及通過(guò)線面角公式求定比分點(diǎn)問(wèn)題.21、(1);(2).【解析】分析:(1)在式子中運(yùn)用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運(yùn)用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論