版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
海南省東方市八所中學2023屆高三第一次聯(lián)考數學試題(文理)試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中含的項的系數為()A. B.60 C.70 D.802.直角坐標系中,雙曲線()與拋物線相交于、兩點,若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.3.《九章算術》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.4.已知函數,其中,記函數滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.5.已知數列是公比為的正項等比數列,若、滿足,則的最小值為()A. B. C. D.6.已知,則的大小關系為()A. B. C. D.7.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.8.根據黨中央關于“精準”脫貧的要求,我市某農業(yè)經濟部門派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.9.已知向量,,,若,則()A. B. C. D.10.已知平面向量,,,則實數x的值等于()A.6 B.1 C. D.11.臺球是一項國際上廣泛流行的高雅室內體育運動,也叫桌球(中國粵港澳地區(qū)的叫法)、撞球(中國地區(qū)的叫法)控制撞球點、球的旋轉等控制母球走位是擊球的一項重要技術,一次臺球技術表演節(jié)目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F處各放一個目標球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F處的目標球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm12.已知向量,且,則m=()A.?8 B.?6C.6 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.14.己知函數,若關于的不等式對任意的恒成立,則實數的取值范圍是______.15.已知函數,,若函數有3個不同的零點x1,x2,x3(x1<x2<x3),則的取值范圍是_________.16.某校名學生參加軍事冬令營活動,活動期間各自扮演一名角色進行分組游戲,角色按級別從小到大共種,分別為士兵、排長、連長、營長、團長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級別連續(xù)的個不同角色.已知這名學生扮演的角色有名士兵和名司令,其余角色各人,現在新加入名學生,將這名學生分成組進行游戲,則新加入的學生可以扮演的角色的種數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右頂點為,為上頂點,點為橢圓上一動點.(1)若,求直線與軸的交點坐標;(2)設為橢圓的右焦點,過點與軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.18.(12分)已知曲線的極坐標方程為,直線的參數方程為(為參數).(1)求曲線的直角坐標方程與直線的普通方程;(2)已知點,直線與曲線交于、兩點,求.19.(12分)已知函數.(1)若在上為單調函數,求實數a的取值范圍:(2)若,記的兩個極值點為,,記的最大值與最小值分別為M,m,求的值.20.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.21.(12分)在直角坐標系xOy中,直線的參數方程為(t為參數).以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)寫出圓C的直角坐標方程;(2)設直線l與圓C交于A,B兩點,,求的值.22.(10分)在中,角所對的邊分別是,且.(1)求角的大??;(2)若,求邊長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
展開式中含的項是由的展開式中含和的項分別與前面的常數項和項相乘得到,由二項式的通項,可得解【詳解】由題意,展開式中含的項是由的展開式中含和的項分別與前面的常數項和項相乘得到,所以的展開式中含的項的系數為.故選:B【點睛】本題考查了二項式系數的求解,考查了學生綜合分析,數學運算的能力,屬于基礎題.2、D【解析】
根據題干得到點A坐標為,代入拋物線得到坐標為,再將點代入雙曲線得到離心率.【詳解】因為三角形OAB是等邊三角形,設直線OA為,設點A坐標為,代入拋物線得到x=2b,故點A的坐標為,代入雙曲線得到故答案為:D.【點睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍).3、B【解析】
由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側棱長為2且與底面垂直,因為直三棱柱可以復原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關計算,屬于基礎題.4、D【解析】
由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.5、B【解析】
利用等比數列的通項公式和指數冪的運算法則、指數函數的單調性求得再根據此范圍求的最小值.【詳解】數列是公比為的正項等比數列,、滿足,由等比數列的通項公式得,即,,可得,且、都是正整數,求的最小值即求在,且、都是正整數范圍下求最小值和的最小值,討論、取值.當且時,的最小值為.故選:B.【點睛】本題考查等比數列的通項公式和指數冪的運算法則、指數函數性質等基礎知識,考查數學運算求解能力和分類討論思想,是中等題.6、A【解析】
根據指數函數的單調性,可得,再利用對數函數的單調性,將與對比,即可求出結論.【詳解】由題知,,則.故選:A.【點睛】本題考查利用函數性質比較大小,注意與特殊數的對比,屬于基礎題..7、B【解析】
由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.8、A【解析】
每個縣區(qū)至少派一位專家,基本事件總數,甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數,由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家基本事件總數:甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數:甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.9、A【解析】
根據向量坐標運算求得,由平行關系構造方程可求得結果.【詳解】,,解得:故選:【點睛】本題考查根據向量平行關系求解參數值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.10、A【解析】
根據向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.11、D【解析】
過點做正方形邊的垂線,如圖,設,利用直線三角形中的邊角關系,將用表示出來,根據,列方程求出,進而可得正方形的邊長.【詳解】過點做正方形邊的垂線,如圖,設,則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點睛】本題考查直角三角形中的邊角關系,關鍵是要構造直角三角形,是中檔題.12、D【解析】
由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點睛】本題考查了三棱錐的外接球問題,意在考查學生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關鍵.14、【解析】
首先判斷出函數為定義在上的奇函數,且在定義域上單調遞增,由此不等式對任意的恒成立,可轉化為在上恒成立,進而建立不等式組,解出即可得到答案.【詳解】解:函數的定義域為,且,函數為奇函數,當時,函數,顯然此時函數為增函數,函數為定義在上的增函數,不等式即為,在上恒成立,,解得.故答案為.【點睛】本題考查函數單調性及奇偶性的綜合運用,考查不等式的恒成立問題,屬于常規(guī)題目.15、【解析】
先根據題意,求出的解得或,然后求出f(x)的導函數,求其單調性以及最值,在根據題意求出函數有3個不同的零點x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數有3個不同的零點,即+m=0有兩個不同的解,解之得即或因為的導函數,令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數有3個不同的零點,(1)有兩個不同的解,此時有一個解;(2)有兩個不同的解,此時有一個解當有兩個不同的解,此時有一個解,此時,不符合題意;或是不符合題意;所以只能是解得,此時=-m,此時有兩個不同的解,此時有一個解此時,不符合題意;或是不符合題意;所以只能是解得,此時=,綜上:的取值范圍是故答案為【點睛】本題主要考查了函數與導函數的綜合,考查到了函數的零點,導函數的應用,以及數形結合的思想、分類討論的思想,屬于綜合性極強的題目,屬于難題.16、【解析】
對新加入的學生所扮演的角色進行分類討論,分析各種情況下個學生所扮演的角色的分組,綜合可得出結論.【詳解】依題意,名學生分成組,則一定是個人組和個人組.①若新加入的學生是士兵,則可以將這個人分組如下;名士兵;士兵、排長、連長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學生可以是士兵,由對稱性可知也可以是司令;②若新加入的學生是排長,則可以將這個人分組如下:名士兵;連長、營長、團長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學生可以是排長,由對稱性可知也可以是軍長;③若新加入的學生是連長,則可以將這個人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團長各名;旅長、師長、軍長各名;名司令.所以新加入的學生可以是連長,由對稱性可知也可以是師長;④若新加入的學生是營長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;營長、團長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學生可以是營長,由對稱性可知也可以是旅長;⑤若新加入的學生是團長,則可以將這個人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團長.所以新加入的學生可以是團長.綜上所述,新加入學生可以扮演種角色.故答案為:.【點睛】本題考查分類計數原理的應用,解答的關鍵就是對新加入的學生所扮演的角色進行分類討論,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)直接求出直線方程,與橢圓方程聯(lián)立求出點坐標,從而可得直線方程,得其與軸交點坐標;(2)設,則,求出直線和的方程,從而求得兩直線的交點坐標,證明此交點在橢圓上,即此點坐標適合橢圓方程.代入驗證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關系的綜合,(1)由題知,,則.因為,所以,則直線的方程為,聯(lián)立,可得故.則,直線的方程為.令,得,故直線與軸的交點坐標為.(2)證明:因為,,所以.設點,則.設當時,設,則,此時直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點為,顯然在橢圓上.同理當時,交點也在橢圓上.當時,可設直線的方程為,即.直線的方程為,聯(lián)立方程,消去得,化簡并解得.將代入中,化簡得.所以兩直線的交點為.因為,又因為,所以,則,所以點在橢圓上.綜上所述,直線與直線的交點在橢圓上.【點睛】本題考查直線與橢圓相交問題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點坐標,代入曲線方程驗證點在曲線.本題考查了學生的運算求解能力.18、(1).(2)【解析】
(1)根據極坐標與直角坐標互化公式,以及消去參數,即可求解;(2)設兩點對應的參數分別為,,將直線的參數方程代入曲線方程,結合根與系數的關系,即可求解.【詳解】(1)對于曲線的極坐標方程為,可得,又由,可得,即,所以曲線的普通方程為.由直線的參數方程為(為參數),消去參數可得,即直線的方程為,即.(2)設兩點對應的參數分別為,,將直線的參數方程(為參數)代入曲線中,可得.化簡得:,則.所以.【點睛】本題主要考查了參數方程與普通方程,極坐標方程與直角坐標方程的互化,以及直線的參數方程的應用,著重考查了推理與運算能力,屬于基礎題.19、(1);(2)【解析】
(1)求導.根據單調,轉化為對恒成立求解(2)由(1)知,是的兩個根,不妨設,令.根據,確定,將轉化為.令,用導數法研究其單調性求最值.【詳解】(1)的定義域為,.因為單調,所以對恒成立,所以,恒成立,因為,當且僅當時取等號,所以;(2)由(1)知,是的兩個根.從而,,不妨設,則.因為,所以t為關于a的減函數,所以..令,則.因為當時,在上為減函數.所以當時,.從而,所以在上為減函數.所以當時,.【點睛】本題主要考查導數在函數中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.20、(1)證明見解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內找一條直線垂直平面BDE即可;(2)以O為坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農業(yè)機械出租與農產品冷鏈物流合同3篇
- 二零二五年度公寓租賃合同書(含共享空間服務)3篇
- 2025年度大型國企原材料采購合同風險管理與優(yōu)化3篇
- 2025年度公務車輛個人使用管理與費用監(jiān)督協(xié)議3篇
- 二零二五年度數字健康產業(yè)合作成立公司協(xié)議3篇
- 2025年度車輛分期付款買賣合同協(xié)議書3篇
- 農村土地征收補償安置買賣合同(2025年版)3篇
- 二零二五年度農村土地經營權流轉與農業(yè)產業(yè)鏈金融合作合同2篇
- 二零二五年度高端醫(yī)療器械采購合同風險分析與預防3篇
- 二零二五年度美發(fā)品牌形象授權合作合同3篇
- 中央2025年全國人大機關直屬事業(yè)單位招聘18人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 2024至2030年四氯苯醌項目投資價值分析報告
- 北京市海淀區(qū)2024-2025學年七年級上學期期中考試英語試卷(含答案)
- 中資企業(yè)出海報告:潮涌浪闊四海揚帆
- 2024-2025學年人教版八年級上冊地理期末測試卷(二)(含答案)
- 80、沈陽桃仙機場二平滑工程冬期施工方案
- 《STM32Cube嵌入式系統(tǒng)應用》HAL庫版本習題及答案
- 一年級數學練習題-20以內加減法口算題(4000道)直接打印版
- 2024年度無人機飛行培訓合同
- 2025年中國細胞與基因治療行業(yè)深度分析、投資前景、趨勢預測報告(智研咨詢)
- 統(tǒng)編版語文二年級上冊第一單元快樂讀書吧(推進課)公開課一等獎創(chuàng)新教案
評論
0/150
提交評論