版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省宜春市上2022-2023學年高三考前實戰(zhàn)演練數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線()的漸近線方程為,則()A. B. C. D.2.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.3.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.4.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關于對稱 D.函數(shù)圖像關于對稱5.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.6.已知函數(shù)的定義域為,且,當時,.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.87.己知函數(shù)若函數(shù)的圖象上關于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.8.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.9.如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內(nèi)部的一些虛線構(gòu)成的,則該幾何體的體積為()A. B. C.6 D.與點O的位置有關10.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內(nèi)隨機取N個點,經(jīng)統(tǒng)計落入五環(huán)內(nèi)部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.11.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或512.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%二、填空題:本題共4小題,每小題5分,共20分。13.設是定義在上的函數(shù),且,對任意,若經(jīng)過點的一次函數(shù)與軸的交點為,且互不相等,則稱為關于函數(shù)的平均數(shù),記為.當_________時,為的幾何平均數(shù).(只需寫出一個符合要求的函數(shù)即可)14.已知函數(shù)為奇函數(shù),,且與圖象的交點為,,…,,則______.15.正四面體的各個點在平面同側(cè),各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.16.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.18.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.19.(12分)已知函數(shù).(1)若對任意x0,f(x)0恒成立,求實數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個不同的零點x1,x2(x1x2),證明:.20.(12分)如圖1,與是處在同-個平面內(nèi)的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.21.(12分)設函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當x>1時,g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.22.(10分)設的內(nèi)角、、的對邊長分別為、、.設為的面積,滿足.(1)求;(2)若,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)雙曲線方程(),確定焦點位置,再根據(jù)漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎題.2、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.3、C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應為k>5?本題選擇C選項.點睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時,要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.4、C【解析】
依題意可得,即函數(shù)圖像關于對稱,再求出函數(shù)的導函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點睛】本題考查函數(shù)的對稱性的判定,利用導數(shù)判斷函數(shù)的單調(diào)性,屬于基礎題.5、B【解析】
構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設,則函數(shù)的導數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學生分析問題解決問題的能力,是難題.6、A【解析】
根據(jù)所給函數(shù)解析式滿足的等量關系及指數(shù)冪運算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域為,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點睛】本題考查了指數(shù)冪的運算及化簡,利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應用,屬于中檔題.7、B【解析】
考慮當時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導數(shù)和零點存在定理可得實數(shù)的取值范圍.【詳解】因為的圖象上關于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當時,,故在上為增函數(shù),在上至多一個零點,舍.當時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當時,且,故在上存在一個零點.又,其中.令,則,當時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當時,有兩個不同的零點.故選:B.【點睛】本題考查函數(shù)的零點,一般地,較為復雜的函數(shù)的零點,必須先利用導數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點存在定理說明零點的存在性,本題屬于難題.8、D【解析】
先求出四個頂點、四個焦點的坐標,四個頂點構(gòu)成一個菱形,求出菱形的面積,四個焦點構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.9、B【解析】
根據(jù)三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結(jié)論.【詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構(gòu)成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關鍵,屬于基礎題.10、B【解析】
根據(jù)比例關系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎題.11、B【解析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎題.12、B【解析】試題分析:由題意故選B.考點:正態(tài)分布二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由定義可知三點共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點睛】本題考查了兩點的斜率公式,考查了推理能力,考查了運算能力.本題關鍵是分析出三點共線.14、18【解析】
由題意得函數(shù)f(x)與g(x)的圖像都關于點對稱,結(jié)合函數(shù)的對稱性進行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關于點對稱,,函數(shù)關于點對稱,所以兩個函數(shù)圖象的交點也關于點(1,2)對稱,與圖像的交點為,,…,,兩兩關于點對稱,.故答案為:18【點睛】本題考查了函數(shù)對稱性的應用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對稱性是解決本題的關鍵,屬于中檔題.15、【解析】
不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),根據(jù)題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運算求解的能力,屬于難題,16、【解析】
根據(jù)題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫出幾何圖形,以為原點建立空間直角坐標系:設正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標方程;(2)聯(lián)立極坐標方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標方程為:.轉(zhuǎn)換為極坐標方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉(zhuǎn)換為直角坐標方程為:,化為一般式得化為極坐標方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【點睛】本題主要考查參數(shù)方程與普通方程的互化、直角坐標方程與極坐標方程的互化,熟記公式即可,屬于常考題型.18、(1);(2).【解析】
(1)分類討論,,,即可得出結(jié)果;(2)先由題意,將問題轉(zhuǎn)化為即可,再求出,的最小值,解不等式即可得出結(jié)果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當時,,所以;因為,所以,解得,結(jié)合,所以的取值范圍是.【點睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記分類討論的思想、以及絕對值不等式的性質(zhì)即可,屬于??碱}型.19、(1);(2)證明見解析.【解析】
(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【詳解】(1)由,得.令.當時,;當時,;在上單調(diào)遞增,在上單調(diào)遞減,.對任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點睛】本題考查利用導數(shù)解決不等式恒成立問題,利用導數(shù)證明不等式,屬于難題.20、(1)證明見解析(2)(3)【解析】
根據(jù)折疊圖形,,由線面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標原點,為軸建立空間直角坐標系,根據(jù),可知,,表示相應點的坐標,分別求得平面與平面的法向量,代入求解.設所求幾何體的體積為,設為高,則,表示梯形BEFD和ABD的面積由,再利用導數(shù)求最值.【詳解】(1)證明:不妨設與的交點為與的交點為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因為平面,所以....(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標原點,為軸建立如圖所示的空間直角坐標系由題意知由可知,則則有,,設平面與平面的法向量分別為則有則所以因為,解得設所求幾何體的體積為,設,則,當時,,當時,在是增函數(shù),在上是減函數(shù)當時,有最大值,即六面體的體積的最大值是【點睛】本題主要考查線線垂直,線面垂直,面面垂直的轉(zhuǎn)化,二面角的向量求法和空間幾何體的體積,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.21、(Ⅰ)當時,<0,單調(diào)遞減;當時,>0,單調(diào)遞增;(Ⅱ)詳見解析;(Ⅲ).【解析】試題分析:本題考查導數(shù)的計算、利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學生的分析問題、解決問題的能力和計算能力.第(Ⅰ)問,對求導,再對a進行討論,判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導數(shù)判斷函數(shù)的單調(diào)性,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能穿戴設備研發(fā)生產(chǎn)合同6篇
- 2024年虛擬現(xiàn)實產(chǎn)業(yè)增資擴股合作協(xié)議書3篇
- 2024年證券投資協(xié)議模板一
- 2024年環(huán)保節(jié)能建筑材料采購合同簽訂原則與綠色認證要求3篇
- 2024年軟件許可與服務合同
- 胰腺腫瘤影像學診斷 PP課件
- 2024年貨車運輸服務承包合同模板
- 2024配件的采購合同范本
- 2024年社區(qū)食堂承包經(jīng)營管理合同樣本3篇
- 2024年度水土保持與生態(tài)農(nóng)業(yè)項目合作合同3篇
- 基于實驗教學培養(yǎng)學生物理核心素養(yǎng)的研究
- 退化林修復投標方案
- 貴陽市南明區(qū)2023-2024學年四年級數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含答案
- 第六單元大單元教學設計統(tǒng)編版語文八年級上冊
- 盤古神話中英文版
- 車輛移交安全協(xié)議書
- 辦公室換崗后的心得體會辦公室輪崗心得體會總結(jié)(二篇)
- 提高混凝土外觀質(zhì)量-QC小組活動成果交流材料(建設)
- 影像敘事語言智慧樹知到答案章節(jié)測試2023年中國傳媒大學
- 流體力學(清華大學張兆順54講) PPT課件 1
- 銷售人員末位淘汰制度
評論
0/150
提交評論