【教學】《三角形內(nèi)角和定理》示范教學 省賽獲獎_第1頁
【教學】《三角形內(nèi)角和定理》示范教學 省賽獲獎_第2頁
【教學】《三角形內(nèi)角和定理》示范教學 省賽獲獎_第3頁
【教學】《三角形內(nèi)角和定理》示范教學 省賽獲獎_第4頁
【教學】《三角形內(nèi)角和定理》示范教學 省賽獲獎_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第七章平行線的證明7.5三角形內(nèi)角和定理第2課時學習目標1.掌握三角形內(nèi)角和定理的兩個推理,并能運用這些定理解決簡單的問題.2.經(jīng)歷探索與證明的過程,進一步發(fā)展推理能力.3.在一題多解、一題多變中,積累解決幾何問題的經(jīng)驗,提升解決問題的能力.新知導入△ABC內(nèi)角的一條邊與另一條邊的反向延長線組成的角,稱為△ABC的外角.請試著畫出△ABC的其他外角.新知導入合作探究圖中,∠ACD與其他角有什么關系?請證明你的結(jié)論.發(fā)現(xiàn):三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.合作探究已知:△ABC.求證:∠ACD=∠A+∠B,∠ACD>∠A,∠ACD>∠B.證明:∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理)∴∠A+∠B=180°-∠ACB(等式的性質(zhì)),∵∠ACD+∠ACB=180°(平角的定義)∴∠ACD=180°-∠ACB(等式的性質(zhì))∴∠ACD=∠A+∠B(等量代換)∴∠ACD>∠A,∠ACD>∠B.合作探究

在這里,我們通過三角形的內(nèi)角和定理直接推導出兩個新定理.

像這樣,由一個基本事實或定理直接推出的定理,叫做這個基本事實或定理的推論.推論可以當做定理使用.三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.典例精析例1已知,如圖,在△ABC中,∠B=∠C,AD平分外角∠EAC.求證:AD∥BCBACDE證明:∵∠EAC=∠B+∠C(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性質(zhì))∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分線的定義)∴∠DAE=∠B(等量代換)∴AD∥BC(同位角相等,兩直線平行)證明:∵∠EAC=∠B+∠C(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性質(zhì))∵AD平分∠EAC(已知)∴∠DAC=∠EAC(角平分線的定義)∴∠DAC=∠C(等量代換)∴AD∥BC(內(nèi)錯角相等,兩直線平行)典例精析想一想,還有沒有其他的證明方法呢?BACDE典例精析BACDE證明:∵∠EAC=∠B+∠C(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和),∠B=∠C(已知)∴∠C=∠EAC(等式的性質(zhì))∵AD平分∠EAC(已知)∴∠DAC=∠EAC∴∠DAC=∠C(等量代換)∵∠B+∠BAC+∠C=180°∴∠B+∠BAC+∠DAC=180°即:∠B+∠DAB=180°∴AD∥BC(同旁內(nèi)角互補,兩直線平行)典例精析例2如圖,P是△ABC內(nèi)的一點,求證:∠BPC>∠A.證明:延長BP,交AC于D,∵∠BPC是△PDC的外角(外角定義)∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).∵∠PDC是△ABD的外角(外角定義)∴∠PDC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).∴∠BPC>∠A.課堂練習1.判斷下列命題的對錯.(1)三角形的外角和是指三角形的所有外角的和.()(2)三角形的外角和等于它的內(nèi)角和的2倍.()(3)三角形的一個外角等于兩個內(nèi)角的和.()(4)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.()(5)三角形的一個外角大于任何一個內(nèi)角.()(6)三角形的一個內(nèi)角小于任何一個與它不相鄰的外角.()課堂練習2.若一個三角形的一個外角小于與它相鄰的內(nèi)角,則這個三角形是()A.直角三角形B.銳角三角形C.鈍角三角形D.無法確定C3.如圖所示,若∠A=32°,∠B=45°,∠C=38°,則∠DFE等于()A.120°B.115°C.110°D.105°FEDCBAB課堂練習4.如圖,AB//CD,∠A=37°,∠C=63°,那么∠F等于()FABECDA.26°B.63°C.37°D.60°A課堂練習5.如圖,如果∠1=100°,∠2=145°,那么∠3等于()A.110°B.160°C.137°D.115°D課堂練習6.如圖,求證:(1)∠BDC>∠A.(2)∠BDC=∠B+∠C+∠A.課堂練習證法一:(1)連接AD,并延長AD,如圖,則∠1是△ABD的一個外角,∠2是△ACD的一個外角.∴∠1>∠3.∠2>∠4(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠1+∠2>∠3+∠4(不等式的性質(zhì))即:∠BDC>∠BAC.課堂練習證法一:(2)連結(jié)AD,并延長AD,如圖.則∠1是△ABD的一個外角,∠2是△ACD的一個外角.∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性質(zhì))即:∠BDC=∠B+∠C+∠BAC課堂練習證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))課堂練習證法二:(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論