2023屆山東省禹城市重點中學初三數(shù)學試題第一次聯(lián)考試題含解析_第1頁
2023屆山東省禹城市重點中學初三數(shù)學試題第一次聯(lián)考試題含解析_第2頁
2023屆山東省禹城市重點中學初三數(shù)學試題第一次聯(lián)考試題含解析_第3頁
2023屆山東省禹城市重點中學初三數(shù)學試題第一次聯(lián)考試題含解析_第4頁
2023屆山東省禹城市重點中學初三數(shù)學試題第一次聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆山東省禹城市重點中學初三數(shù)學試題第一次聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在平面直角坐標系內,點P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如圖,四個有理數(shù)在數(shù)軸上的對應點M,P,N,Q,若點M,N表示的有理數(shù)互為相反數(shù),則圖中表示絕對值最小的數(shù)的點是()A.點M B.點N C.點P D.點Q3.已知直線m∥n,將一塊含30°角的直角三角板ABC,按如圖所示方式放置,其中A、B兩點分別落在直線m、n上,若∠1=25°,則∠2的度數(shù)是()A.25° B.30° C.35° D.55°4.下列說法正確的是()A.某工廠質檢員檢測某批燈泡的使用壽命采用普查法B.已知一組數(shù)據1,a,4,4,9,它的平均數(shù)是4,則這組數(shù)據的方差是7.6C.12名同學中有兩人的出生月份相同是必然事件D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”中,任取其中一個圖形,恰好既是中心對稱圖形,又是軸對稱圖形的概率是5.如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE⊥AB,垂足為點E,DE=1,則BC=()A. B.2 C.3 D.+26.在,,,這四個數(shù)中,比小的數(shù)有()個.A. B. C. D.7.對于下列調查:①對從某國進口的香蕉進行檢驗檢疫;②審查某教科書稿;③中央電視臺“雞年春晚”收視率.其中適合抽樣調查的是()A.①②B.①③C.②③D.①②③8.夏新同學上午賣廢品收入13元,記為+13元,下午買舊書支出9元,記為()元.A.+4B.﹣9C.﹣4D.+99.如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的度數(shù)為()A.90° B.60° C.45° D.30°10.二元一次方程組的解為()A. B. C. D.11.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=112.如圖,在?ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,若AB=6,EF=2,則BC的長為()A.8 B.10 C.12 D.14二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:x2﹣3x+(x﹣3)=_____.14.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側面的B點,最少要用_____秒鐘.15.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側面展開圖的面積為.16.如圖,△ABC中,AB=AC,D是AB上的一點,且AD=AB,DF∥BC,E為BD的中點.若EF⊥AC,BC=6,則四邊形DBCF的面積為____.17.分解因式:_______18.使得分式值為零的x的值是_________;三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設計圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點C在DE上,CD=0.5米,CD是限高標志牌的高度(標志牌上寫有:限高米).如果進入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結果精確到0.1米,參考數(shù)據:≈1.41,≈1.73,≈3.16)20.(6分)如圖,某反比例函數(shù)圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達式.21.(6分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉過程中,AD′和BE′有怎樣的數(shù)量關系?并說明理由;②連接AP,當AP最大時,求AD′的值.(結果保留根號)22.(8分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設甲的騎行時間為x(h)(0≤x≤2)(1)根據題意,填寫下表:時間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關于x的函數(shù)解析式;(3)設甲,乙兩人之間的距離為y,當y=12時,求x的值.23.(8分)某興趣小組進行活動,每個男生都頭戴藍色帽子,每個女生都頭戴紅色帽子.帽子戴好后,每個男生都看見戴紅色帽子的人數(shù)比戴藍色帽子的人數(shù)的2倍少1,而每個女生都看見戴藍色帽子的人數(shù)是戴紅色帽子的人數(shù)的.問該興趣小組男生、女生各有多少人?24.(10分)請根據圖中提供的信息,回答下列問題:一個水瓶與一個水杯分別是多少元?甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)25.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點.求反比例函數(shù)和一次函數(shù)的解析式;根據圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.26.(12分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經過點B.求反比例函數(shù)的解析式;若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.27.(12分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統(tǒng)計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統(tǒng)計圖補充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機抽出兩張卡片,求抽到A,B兩班的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

判斷出P的橫縱坐標的符號,即可判斷出點P所在的相應象限.【詳解】當a為正數(shù)的時候,a+3一定為正數(shù),所以點P可能在第一象限,一定不在第四象限,

當a為負數(shù)的時候,a+3可能為正數(shù),也可能為負數(shù),所以點P可能在第二象限,也可能在第三象限,

故選D.【點睛】本題考查了點的坐標的知識點,解題的關鍵是由a的取值判斷出相應的象限.2、C【解析】試題分析:∵點M,N表示的有理數(shù)互為相反數(shù),∴原點的位置大約在O點,∴絕對值最小的數(shù)的點是P點,故選C.考點:有理數(shù)大小比較.3、C【解析】

根據平行線的性質即可得到∠3的度數(shù),再根據三角形內角和定理,即可得到結論.【詳解】解:∵直線m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故選C.【點睛】本題考查平行線的性質,熟練掌握平行線的性質是解題的關鍵.4、B【解析】

分別用方差、全面調查與抽樣調查、隨機事件及概率的知識逐一進行判斷即可得到答案.【詳解】A.某工廠質檢員檢測某批燈泡的使用壽命時,檢測范圍比較大,因此適宜采用抽樣調查的方法,故本選項錯誤;B.根據平均數(shù)是4求得a的值為2,則方差為[(1?4)2+(2?4)2+(4?4)2+(4?4)2+(9?4)2]=7.6,故本選項正確;C.12個同學的生日月份可能互不相同,故本事件是隨機事件,故錯誤;D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”六個圖形中有3個既是軸對稱圖形,又是中心對稱圖形,所以,恰好既是中心對稱圖形,又是軸對稱圖形的概率是,故本選項錯誤.故答案選B.【點睛】本題考查的知識點是概率公式、全面調查與抽樣調查、方差及隨機事件,解題的關鍵是熟練的掌握概率公式、全面調查與抽樣調查、方差及隨機事件.5、C【解析】試題分析:根據角平分線的性質可得CD=DE=1,根據Rt△ADE可得AD=2DE=2,根據題意可得△ADB為等腰三角形,則DE為AB的中垂線,則BD=AD=2,則BC=CD+BD=1+2=1.考點:角平分線的性質和中垂線的性質.6、B【解析】

比較這些負數(shù)的絕對值,絕對值大的反而小.【詳解】在﹣4、﹣、﹣1、﹣這四個數(shù)中,比﹣2小的數(shù)是是﹣4和﹣.故選B.【點睛】本題主要考查負數(shù)大小的比較,解題的關鍵時負數(shù)比較大小時,絕對值大的數(shù)反而小.7、B【解析】

根據普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似解答.【詳解】①對從某國進口的香蕉進行檢驗檢疫適合抽樣調查;②審查某教科書稿適合全面調查;③中央電視臺“雞年春晚”收視率適合抽樣調查.故選B.【點睛】本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.8、B【解析】

收入和支出是兩個相反的概念,故兩個數(shù)字分別為正數(shù)和負數(shù).【詳解】收入13元記為+13元,那么支出9元記作-9元【點睛】本題主要考查了正負數(shù)的運用,熟練掌握正負數(shù)的概念是本題的關鍵.9、C【解析】試題分析:根據勾股定理即可得到AB,BC,AC的長度,進行判斷即可.試題解析:連接AC,如圖:根據勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故選C.考點:勾股定理.10、C【解析】

利用加減消元法解這個二元一次方程組.【詳解】解:①-②2,得:y=-2,將y=-2代入②,得:2x-2=4,解得,x=3,所以原方程組的解是.故選C.【點睛】本題考查了解二元一次方程組和解一元一次方程等知識點,解此題的關鍵是把二元一次方程組轉化成一元一次方程,題目比較典型,難度適中.11、D【解析】

先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發(fā)現(xiàn)和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗12、B【解析】試題分析:根據平行四邊形的性質可知AB=CD,AD∥BC,AD=BC,然后根據平行線的性質和角平分線的性質可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故選B.點睛:此題主要考查了平行四邊形的性質和等腰三角形的性質,解題關鍵是把所求線段轉化為題目中已知的線段,根據等量代換可求解.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(x-3)(x+1);【解析】根據因式分解的概念和步驟,可先把原式化簡,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x2﹣2x﹣3=(x﹣3)(x+1);或先把前兩項提公因式,然后再把x-3看做整體提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).故答案為(x﹣3)(x+1).點睛:此題主要考查了因式分解,關鍵是明確因式分解是把一個多項式化為幾個因式積的形式.再利用因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),進行分解因式即可.14、2.5秒.【解析】

把此正方體的點A所在的面展開,然后在平面內,利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【詳解】解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【點睛】本題考查了勾股定理的拓展應用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關鍵.15、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側面展開圖的面積為:×6π×5=15π.故答案為15π.考點:圓錐的計算.16、2【解析】

解:如圖,過D點作DG⊥AC,垂足為G,過A點作AH⊥BC,垂足為H,∵AB=AC,點E為BD的中點,且AD=AB,∴設BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.17、【解析】=2()=.故答案為.18、2【解析】

根據分式的性質,要使分式有意義,則必須分母不能為0,要使分式為零,則只有分子為0,因此計算即可.【詳解】解:要使分式有意義則,即要使分式為零,則,即綜上可得故答案為2【點睛】本題主要考查分式的性質,關鍵在于分式的分母不能為0.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、2.1.【解析】

據題意得出tanB=,即可得出tanA,在Rt△ADE中,根據勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,設EF=x,即可求出x,從而得出CF=1x的長.【詳解】解:據題意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2設EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面沒有“設x>0”,則此處應“x=±,舍負”),∴CF=1x=≈2.1,∴該停車庫限高2.1米.【點睛】點評:本題考查了解直角三角形的應用,坡面坡角問題和勾股定理,解題的關鍵是坡度等于坡角的正切值.20、(1)y;(2)yx+1.【解析】

(1)把A的坐標代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長,然后利用三角形的面積公式即可得到一個關于b的方程,求得b的值,進而求得a的值,根據待定系數(shù)法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設B點坐標為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數(shù)y的圖象經過點B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b1,∴B(6,1),設AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數(shù)解析式,得,解得:,所以直線AB的解析式為yx+1.【點睛】本題考查了利用待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,熟練掌握待定系數(shù)法以及正確表示出BC,AD的長是解題的關鍵.21、(1)當CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】

(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉的性質,即可判斷出△ACD≌△BCE'即可得出結論;②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結論.【詳解】(1)當CC'=時,四邊形MCND'是菱形.理由:由平移的性質得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當α≠180°時,由旋轉的性質得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當α=180°時,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關系得,AP<AC+CP,∴當點A,C,P三點共線時,AP最大,如圖1,在△D'CE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質,菱形的性質,平移和旋轉的性質,等邊三角形的判定和性質,勾股定理,解(1)的關鍵是四邊形MCND'是平行四邊形,解(2)的關鍵是判斷出點A,C,P三點共線時,AP最大.22、(1)18,2,20(2)(3)當y=12時,x的值是1.2或1.6【解析】

(Ⅰ)根據路程、時間、速度三者間的關系通過計算即可求得相應答案;(Ⅱ)根據路程=速度×時間結合甲、乙的速度以及時間范圍即可求得答案;(Ⅲ)根據題意,得,然后分別將y=12代入即可求得答案.【詳解】(Ⅰ)由題意知:甲、乙二人平均速度分別是平均速度為10km/h和40km/h,且比甲晚1.5h出發(fā),當時間x=1.8時,甲離開A的距離是10×1.8=18(km),當甲離開A的距離20km時,甲的行駛時間是20÷10=2(時),此時乙行駛的時間是2﹣1.5=0.5(時),所以乙離開A的距離是40×0.5=20(km),故填寫下表:(Ⅱ)由題意知:y1=10x(0≤x≤1.5),y2=;(Ⅲ)根據題意,得,當0≤x≤1.5時,由10x=12,得x=1.2,當1.5<x≤2時,由﹣30x+60=12,得x=1.6,因此,當y=12時,x的值是1.2或1.6.【點睛】本題考查了一次函數(shù)的應用,理清題意,弄清各數(shù)量間的關系是解題的關鍵.23、男生有12人,女生有21人.【解析】

設該興趣小組男生有x人,女生有y人,然后再根據:(男生的人數(shù)-1)×2-1=女生的人數(shù),(女生的人數(shù)-1)×=男生的人數(shù)

,列出方程組,再進行求解即可.【詳解】設該興趣小組男生有x人,女生有y人,依題意得:,解得:.答:該興趣小組男生有12人,女生有21人.【點睛】本題主要考查了二元一次方程組的應用,解題的關鍵是明確題中各個量之間的關系,并找出等量關系列出方程組.24、(1)一個水瓶40元,一個水杯是8元;(2)當10<n<25時,選擇乙商場購買更合算.當n>25時,選擇甲商場購買更合算.【解析】

(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意列出方程,求出方程的解即可得到結果;(2)計算出兩商場得費用,比較即可得到結果.【詳解】解:(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費用為(40×5+8n)×80%=160+6.4n乙商場所需費用為5×40+(n﹣5×2)×8=120+8n則∵n>10,且n為整數(shù),∴160+6.4n﹣(120+8n)=40﹣1.6n討論:當10<n<25時,40﹣1.6n>0,160+0.64n>120+8n,∴選擇乙商場購買更合算.當n>25時,40﹣1.6n<0,即160+0.64n<120+8n,∴選擇甲商場購買更合算.【點睛】此題主要考查不等式的應用,解題的關鍵是根據題意找到等量關系與不等關系進行列式求解.25、(1)y=,y=?x?1;(2)x<?2或0<x<1【解析】

(1)利用點A的坐標可求出反比例函數(shù)解析式,再把B(1,n)代入反比例函數(shù)解析式,即可求得n的值,于是得到一次函數(shù)的解析式;

(2)根據圖象和A,B兩點的坐標即可寫出一次函數(shù)的值大于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論