




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
線性方程組解的判定第一頁,共四十四頁,編輯于2023年,星期三
用消元法解線性方程組得知,線性方程組解的情況有三種:無窮多解、唯一解和無解.歸納求解過程,實際上就是對方程組(2.6.1)的增廣矩陣2.7線性方程組解的情況判定返回1/28下一頁下一頁上一頁上一頁第二頁,共四十四頁,編輯于2023年,星期三返回2/28上一頁上一頁下一頁下一頁
進行初等行變換,將其化成如下形式的階梯形矩陣:2.7線性方程組解的情況判定第三頁,共四十四頁,編輯于2023年,星期三返回3/28上一頁上一頁下一頁下一頁,(2.7.1)2.7線性方程組解的情況判定第四頁,共四十四頁,編輯于2023年,星期三其中,或.(2.7.2)返回4/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第五頁,共四十四頁,編輯于2023年,星期三
由定理2.6.1可知,階梯形矩陣(2.7.1)和(2.7.2)所表示的方程組與方程組(2.6.1)是同解方程組,于是由矩陣(2.7.1)和(2.7.2)可得方程組(2.7.1)的解的結(jié)論:
1.當時,階梯形矩陣(2.7.1)和(2.7.2)所表示的方程組中的第個方程
“”是一個矛盾方程,因此,方程
組(2.6.1)無解.返回5/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第六頁,共四十四頁,編輯于2023年,星期三
2.當時,方程組(2.6.1)有解.
并且解有兩種情況:
(1)如果,則階梯形矩陣(2.7.1)表示的方程組為,,.返回6/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第七頁,共四十四頁,編輯于2023年,星期三
用回代的方法,自下而上依次求出,,,的值.因此,方程組(2.6.1)
有唯一解.(2)如果,則階梯形矩陣(2.7.1)表
示的方程組為,,.返回7/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第八頁,共四十四頁,編輯于2023年,星期三將后個未知量項移至等號的右端,得,,,其中,,為自由未知量.因此,方程組(2.6.1)有無窮多解.返回8/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第九頁,共四十四頁,編輯于2023年,星期三
定理2.7.1(線性方程組有解判別定理)
線性方程組(2.6.1)有解的充分必要條件是其系數(shù)矩陣與增廣矩陣的秩相等.即.
推論1
線性方程組(2.6.1)有唯一解的充分必要條件是.返回9/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第十頁,共四十四頁,編輯于2023年,星期三
推論2
線性方程組(2.6.1)有無窮多解的充分必要條件是.
推論3
齊次線性方程組(2.6.2)只有零解的充分必要條件是.
推論4
齊次線性方程組(2.6.2)有非零的充分必要條件是.返回10/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第十一頁,共四十四頁,編輯于2023年,星期三
特別地,當齊次線性方程組(2.6.2)中,方程個數(shù)少于未知量個數(shù)時,必有.這時方程(2.6.2)一定有非零解.返回11/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第十二頁,共四十四頁,編輯于2023年,星期三
例1
判別下列方程組是否有解?若有解,是有唯一解還是有無窮多解?(1),,,;返回12/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第十三頁,共四十四頁,編輯于2023年,星期三(2),,,;(3),,,.返回13/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第十四頁,共四十四頁,編輯于2023年,星期三
解
(1)用初等行變換將增廣矩陣化成階梯形矩陣,即返回14/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第十五頁,共四十四頁,編輯于2023年,星期三
因為,,兩者不等,所以方程組無解..返回15/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第十六頁,共四十四頁,編輯于2023年,星期三
(2)用初等行變換將增廣矩陣化成階梯形矩陣,即
因為,所以方程組有無窮多解.返回16/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第十七頁,共四十四頁,編輯于2023年,星期三
(3)用初等行變換將增廣矩陣化成階梯形矩陣,即
因為,所以方程組有唯一解..返回17/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第十八頁,共四十四頁,編輯于2023年,星期三例2
判別下列齊次方程組是否有非零解?,,,.返回18/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第十九頁,共四十四頁,編輯于2023年,星期三
解
用初等行變換將系數(shù)矩陣化成階梯形矩陣,即返回19/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第二十頁,共四十四頁,編輯于2023年,星期三
因為,所以齊次方程組只有零解..返回20/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第二十一頁,共四十四頁,編輯于2023年,星期三
例3
問,取何值時,下列方程組無解?有唯一解?有無窮多解?,,.返回21/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第二十二頁,共四十四頁,編輯于2023年,星期三解
由.返回22/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第二十三頁,共四十四頁,編輯于2023年,星期三
當時,,故方程組有唯一解;
當而時,,故方程組有無窮多解.
當而時,,,故方程組無解;返回23/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第二十四頁,共四十四頁,編輯于2023年,星期三例4
已知總成本是產(chǎn)量的二次函數(shù).根據(jù)統(tǒng)計資料,產(chǎn)量與總成本之間有如表2-1所示的數(shù)據(jù).試求總成本函數(shù)中的,,.返回24/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第二十五頁,共四十四頁,編輯于2023年,星期三表2-1某廠某階段產(chǎn)量與總成本統(tǒng)計表時期產(chǎn)量(千臺)總成本(萬元)第1期第2期第3期61041016020370返回25/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第二十六頁,共四十四頁,編輯于2023年,星期三
解
將,,代入已知二次函數(shù)模型中,得方程組,,.
利用初等行變換將其增廣矩陣化成行簡化階梯形矩陣,再求解.即返回26/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第二十七頁,共四十四頁,編輯于2023年,星期三返回27/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第二十八頁,共四十四頁,編輯于2023年,星期三.方程組的解為:,,.因此
總成本函數(shù)為.返回28/28上一頁上一頁下一頁下一頁2.7線性方程組解的情況判定第二十九頁,共四十四頁,編輯于2023年,星期三返回28/28上一頁上一頁下一頁下一頁課堂小結(jié)齊次線性方程組非齊次線性方程組有無窮多解.bAx=第三十頁,共四十四頁,編輯于2023年,星期三返回28/28上一頁上一頁下一頁下一頁課堂練習1、判斷下列方程解的情況(1)(2)(3)第三十一頁,共四十四頁,編輯于2023年,星期三解:(1)所以方程組有無窮多解.第三十二頁,共四十四頁,編輯于2023年,星期三返回28/28上一頁上一頁下一頁下一頁解:(2)第三十三頁,共四十四頁,編輯于2023年,星期三返回28/28上一頁上一頁下一頁下一頁
因為,,兩者不等,所以方程組無解.第三十四頁,共四十四頁,編輯于2023年,星期三返回28/28上一頁上一頁下一頁下一頁解:(3)第三十五頁,共四十四頁,編輯于2023年,星期三返回28/28上一頁上一頁下一頁下一頁
因為,所以方程組有唯一解.第三十六頁,共四十四頁,編輯于2023年,星期三
2、問,取何值時,下列方程組無解?有唯一解?有無窮多解?第三十七頁,共四十四頁,編輯于2023年,星期三返回28/28上一頁上一頁下一頁下一頁解
由第三十八頁,共四十四頁,編輯于2023年,星期三返回28/28上一頁上一頁下一頁下一頁
當而時,,,故方程組無解;
當時,,故方程組有唯一解;
當而時,,故方程組有無窮多解.第三十九頁,共四十四頁,編輯于2023年,星期三返回28/28上一頁上一頁下一頁下一頁作業(yè)P79習題2.71(2)(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云計算HCIP??荚囶}與參考答案
- 個人借款申請書范文
- 業(yè)務員年度工作計劃
- 企業(yè)弱電維護合同范本
- 三八婦女節(jié)護士愛崗敬業(yè)的演講稿
- 南通批發(fā)市場用電合同范本
- 醫(yī)院房子出售合同范本
- 臺球俱樂部采購合同范本
- 南京租房陰陽合同范例
- 區(qū)域 加盟 合同范本
- 歷史地理學研究-深度研究
- 2025江蘇太倉市城市建設投資集團限公司招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 2.2 學會管理情緒(同步課件)2024-2025學年七年級道德與法治下冊(統(tǒng)編版2024)
- 14磁極與方向(教學設計)-二年級科學下冊(教科版)
- 2025年山西經(jīng)貿(mào)職業(yè)學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2024年09月江蘇2024年蘇州金融租賃校園招考筆試歷年參考題庫附帶答案詳解
- 2025年八省聯(lián)考數(shù)學試題(原卷版)
- 高教社馬工程倫理學(第二版)教學課件02
- 廣西柳州市2025屆高三第二次模擬考試政治試題含答案
- 《宏觀經(jīng)濟管理研究》課件
- 鳳凰衛(wèi)視中文臺節(jié)目表
評論
0/150
提交評論