版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
14.3.2第十四章整式的乘法與因式分解導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)課本八年級(jí)數(shù)學(xué)上(RJ)教學(xué)課件第1課時(shí)運(yùn)用平方差公式因式分解2020年9月28日1學(xué)習(xí)目標(biāo)1.探索并運(yùn)用平方差公式進(jìn)行因式分解,體會(huì)轉(zhuǎn)化思想.(重點(diǎn))2.能會(huì)綜合運(yùn)用提公因式法和平方差公式對(duì)多項(xiàng)式進(jìn)行因式分解.(難點(diǎn))2020年9月28日2導(dǎo)入新課a米b米b米a米(a-b)情境引入如圖,在邊長(zhǎng)為a米的正方形上剪掉一個(gè)邊長(zhǎng)為b米的小正方形,將剩余部分拼成一個(gè)長(zhǎng)方形,根據(jù)此圖形變換,你能得到什么公式?a2-b2=(a+b)(a-b)2020年9月28日3講授新課用平方差公式進(jìn)行因式分解一想一想:多項(xiàng)式a2-b2有什么特點(diǎn)?你能將它分解因式嗎?是a,b兩數(shù)的平方差的形式))((baba-+=22ba-))((22bababa-+=-整式乘法因式分解兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的乘積.平方差公式:2020年9月28日4√√××辨一辨:下列多項(xiàng)式能否用平方差公式來(lái)分解因式,為什么?√√★符合平方差的形式的多項(xiàng)式才能用平方差公式進(jìn)行因式分解,即能寫成:()2-()2的形式.
兩數(shù)是平方,減號(hào)在中央.(1)x2+y2(2)x2-y2(3)-x2-y2-(x2+y2)y2-x2(4)-x2+y2(5)x2-25y2(x+5y)(x-5y)(6)m2-1(m+1)(m-1)2020年9月28日5例1
分解因式:aabb(
+)(-)a2
-b2=解:(1)原式=2x32x2x33(2)原式整體思想ab典例精析2020年9月28日6方法總結(jié):公式中的a、b無(wú)論表示數(shù)、單項(xiàng)式、還是多項(xiàng)式,只要被分解的多項(xiàng)式能轉(zhuǎn)化成平方差的形式,就能用平方差公式因式分解.2020年9月28日7分解因式:(1)(a+b)2-4a2;(2)9(m+n)2-(m-n)2.針對(duì)訓(xùn)練=(2m+4n)(4m+2n)解:(1)原式=(a+b-2a)(a+b+2a)=(b-a)(3a+b);(2)原式=(3m+3n-m+n)(3m+3n+m-n)=4(m+2n)(2m+n).若用平方差公式分解后的結(jié)果中有公因式,一定要再用提公因式法繼續(xù)分解.2020年9月28日8當(dāng)場(chǎng)編題,考考你!))((22bababa-+=-20152-20142=(2mn)2
-(3xy)2=(x+z)2
-(y+p)2=2020年9月28日9例2
分解因式:解:(1)原式=(x2)2-(y2)2=(x2+y2)(x2-y2)分解因式后,一定要檢查是否還有能繼續(xù)分解的因式,若有,則需繼續(xù)分解.=(x2+y2)(x+y)(x-y);(2)原式=ab(a2-1)分解因式時(shí),一般先用提公因式法進(jìn)行分解,然后再用公式法.最后進(jìn)行檢查.=ab(a+1)(a-1).2020年9月28日10方法總結(jié):分解因式前應(yīng)先分析多項(xiàng)式的特點(diǎn),一般先提公因式,再套用公式.注意分解因式必須進(jìn)行到每一個(gè)多項(xiàng)式都不能再分解因式為止.2020年9月28日11分解因式:(1)5m2a4-5m2b4;(2)a2-4b2-a-2b.針對(duì)訓(xùn)練=(a+2b)(a-2b-1).=5m2(a2+b2)(a+b)(a-b);解:(1)原式=5m2(a4-b4)=5m2(a2+b2)(a2-b2)
(2)原式=(a2-4b2)-(a+2b)=(a+2b)(a-2b)-(a+2b)2020年9月28日12例3
已知x2-y2=-2,x+y=1,求x-y,x,y的值.∴x-y=-2②.解:∵x2-y2=(x+y)(x-y)=-2,x+y=1①,聯(lián)立①②組成二元一次方程組,解得2020年9月28日13方法總結(jié):在與x2-y2,x±y有關(guān)的求代數(shù)式或未知數(shù)的值的問(wèn)題中,通常需先因式分解,然后整體代入或聯(lián)立方程組求值.2020年9月28日14例4
計(jì)算下列各題:(1)1012-992;(2)53.52×4-46.52×4.解:(1)原式=(101+99)(101-99)=400;(2)原式=4(53.52-46.52)=4(53.5+46.5)(53.5-46.5)=4×100×7=2800.方法總結(jié):較為復(fù)雜的有理數(shù)運(yùn)算,可以運(yùn)用因式分解對(duì)其進(jìn)行變形,使運(yùn)算得以簡(jiǎn)化.2020年9月28日15例5
求證:當(dāng)n為整數(shù)時(shí),多項(xiàng)式(2n+1)2-(2n-1)2一定能被8整除.即多項(xiàng)式(2n+1)2-(2n-1)2一定能被8整除.證明:原式=(2n+1+2n-1)(2n+1-2n+1)=4n?2=8n,∵n為整數(shù),∴8n被8整除,方法總結(jié):解決整除的基本思路就是將代數(shù)式化為整式乘積的形式,然后分析能被哪些數(shù)或式子整除.2020年9月28日161.下列多項(xiàng)式中能用平方差公式分解因式的是(
)A.a(chǎn)2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9當(dāng)堂練習(xí)D2.分解因式(2x+3)2
-x2的結(jié)果是()A.3(x2+4x+3)B.3(x2+2x+3)C.(3x+3)(x+3)D.3(x+1)(x+3)
D3.若a+b=3,a-b=7,則b2-a2的值為()A.-21B.21C.-10D.10A2020年9月28日174.把下列各式分解因式:(1)16a2-9b2=_________________;(2)(a+b)2-(a-b)2=_________________;
(3)9xy3-36x3y=_________________;(4)
-a4+16=_________________.(4a+3b)(4a-3b)4ab9xy(y+2x)(y-2x)(4+a2)(2+a)(2-a)5.若將(2x)n-81分解成(4x2+9)(2x+3)(2x-3),則n的值是_____________.42020年9月28日186.已知4m+n=40,2m-3n=5.求(m+2n)2-(3m-n)2的值.原式=-40×5=-200.解:原式=(m+2n+3m-n)(m+2n-3m+n)=(4m+n)(3n-2m)=-(4m+n)(2m-3n),當(dāng)4m+n=40,2m-3n=5時(shí),2020年9月28日197.如圖,在邊長(zhǎng)為6.8cm正方形鋼板上,挖去4個(gè)邊長(zhǎng)為1.6cm的小正方形,求剩余部分的面積.解:根據(jù)題意,得6.82-4×1.62=6.82-(2×1.6)2=6.82-3.22=(6.8+3.2)(6.8-3.2)=10×3.6=36(cm2)答:剩余部分的面積為36cm2.2020年9月28日208.(1)992-1能否被100整除嗎?解:(1)因?yàn)?92-1=(99+1)(99-1)=100×98,所以,(2n+1)2-25能被4整除.(2)n為整數(shù),(2n+1)2-25能否被4整除?所以992-1能否被100整除.(2)原式=(2n+1+5)(2n+1-5)=(2n+6)(2n-4)=2(n+3)×2(n-2)=4(n+3)(n-2).2020年9月28日21課堂小結(jié)平方差公式分解因式公式a2-b2=(a+b)(a-b)步驟一提:公因式;二套:公式;三查:多項(xiàng)式的因式分解有沒(méi)有分解到不能再分解為止.2020年9月28日22演講完畢,謝謝觀看!Th
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度物流服務(wù)合同:某電商公司與某物流公司關(guān)于雙十一期間配送服務(wù)的合同3篇
- 二零二五年度無(wú)人機(jī)航拍數(shù)據(jù)保密合同3篇
- 二零二五年度UPS電源采購(gòu)與智能運(yùn)維服務(wù)合同范本3篇
- 專利產(chǎn)品研發(fā)過(guò)程保密合同(2024年度)版B版
- 二零二五版出租車公司股權(quán)投資入股合同3篇
- 二零二五年電子商務(wù)股權(quán)三方轉(zhuǎn)讓及品牌合作協(xié)議
- 二零二五年度酒店布草綠色環(huán)保認(rèn)證與批發(fā)合同3篇
- 專業(yè)化石油鉆井作業(yè)協(xié)議范本(2024)版
- 二零二五年火鍋店合作伙伴關(guān)系維護(hù)與拓展協(xié)議3篇
- 二零二五年度高端酒吧服務(wù)員專屬雇傭服務(wù)合同3篇
- 《國(guó)有控股上市公司高管薪酬的管控研究》
- 餐飲業(yè)環(huán)境保護(hù)管理方案
- 食品安全分享
- 礦山機(jī)械設(shè)備安全管理制度
- 計(jì)算機(jī)等級(jí)考試二級(jí)WPS Office高級(jí)應(yīng)用與設(shè)計(jì)試題及答案指導(dǎo)(2025年)
- 造價(jià)框架協(xié)議合同范例
- 糖尿病肢端壞疽
- 《創(chuàng)傷失血性休克中國(guó)急診專家共識(shí)(2023)》解讀課件
- 小學(xué)六年級(jí)數(shù)學(xué)100道題解分?jǐn)?shù)方程
- YY 0838-2021 微波熱凝設(shè)備
- 病原細(xì)菌的分離培養(yǎng)
評(píng)論
0/150
提交評(píng)論