數(shù)學必修一總結_第1頁
數(shù)學必修一總結_第2頁
數(shù)學必修一總結_第3頁
數(shù)學必修一總結_第4頁
數(shù)學必修一總結_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1/1數(shù)學必修一總結

數(shù)學必修一總結第1篇基本初等函數(shù)

一、指數(shù)函數(shù)

(一)指數(shù)與指數(shù)冪的運算

1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù)。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。

當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)。此時,正數(shù)的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數(shù)時,當是偶數(shù)時,

2、分數(shù)指數(shù)冪

正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:

0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義

指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質也同樣可以推廣到有理數(shù)指數(shù)冪。

3、實數(shù)指數(shù)冪的運算性質

(二)指數(shù)函數(shù)及其性質

1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R。

注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1。

2、指數(shù)函數(shù)的圖象和性質

數(shù)學必修一總結第2篇第I卷(選擇題)

1.設集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},則U(A∩B)=

A.{1,4,5}B.{2,3}C.{4,5}D.{1,5}

2.設集合A={x|x2﹣4x+3≥0},B={x|2x﹣3≤0},則A∪B=

A.(﹣∞,1]∪[3,+∞)B.[1,3]C.D.

3.若全集U={1,2,3,4,5},集合M={1,2},N={2,3,4},則(UM)∩N等于

A.{1}B.{2}C.{3,4}D.{5}

4.已知集合A={﹣1,2},B={x∈Z|0≤x≤2},則A∩B等于

A.{0}B.{2}C.φD.φ

5.設集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,則實數(shù)m的取值范圍為.

A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)

6.已知集合A={1,2,3},B={0,1,2},則A∩B的子集個數(shù)為

A.2B.3C.4D.16

7.如果集合A={x|ax2﹣2x﹣1=0}只有一個元素則a的值是

A.0B.0或1C.﹣1D.0或﹣1

8.已知集合M={x|(x﹣1)=0},那么

A.0∈MB.1MC.﹣1∈MD.0M

9.設A={x|﹣1≤x<2},B={x|x<a},若A∩B≠,則a的取值范圍是

A.a<2B.a>﹣2C.a>﹣1D.﹣1<a≤2

10.以下五個寫法中:①{0}∈{0,1,2};②{1,2};③{0,1,2}={2,0,1};④0∈;⑤A∩=A,正確的個數(shù)有

A.1個B.2個C.3個D.4個

11.集合{1,2,3}的真子集的個數(shù)為

A.5B.6C.7D.8

12.已知3∈{1,a,a﹣2},則實數(shù)a的值為

A.3B.5C.3或5D.無解

13.已知集合A={﹣1,1},B={x|ax+2=0},若BA,則實數(shù)a的所有可能取值的集合為

A.{﹣2}B.{2}C.{﹣2,2}D.{﹣2,0,2}

14.設所有被4除余數(shù)為k(k=0,1,2,3)的整數(shù)組成的集合為Ak,即Ak={x|x=4n+k,n∈Z},則下列結論中錯誤的是A.20XX∈A0B.﹣1∈A3C.a∈Ak,b∈Ak,則a﹣b∈A0D.a+b∈A3,則a∈A1,b∈A2

二、填空題

16.已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若BA,則實數(shù)m=.17.對于任意集合X與Y,定義:①X﹣Y={x|x∈X且xY},②X△Y=(X﹣Y)∪(Y﹣X),(X△Y稱為X與Y的對稱差).已知A={y|y=2x﹣1,x∈R},B={x|x2﹣9≤0},則A△B=.

18.函數(shù)y=的定義域為A,值域為B,則A∩B=.

19.若集合為{1,a,}={0,a2,a+b}時,則a﹣b=.20.用M[A]表示非空集合A中的元素個數(shù),記|A﹣B|=,若A={1,2,3},B={x數(shù)學必修一總結第3篇奇函數(shù)和偶函數(shù)的定義:

奇函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=—f(x),則函數(shù)f(x)稱為奇函數(shù)。

偶數(shù)函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=f(x),則函數(shù)f(x)稱為偶數(shù)函數(shù)。

性質:

奇函數(shù)性質:

1、圖象關于原點對稱

2、滿足f(—x)=—f(x)

3、關于原點對稱的區(qū)間上單調性一致

4、如果奇函數(shù)在x=0上有定義,那么有f(0)=0

5、定義域關于原點對稱(奇偶函數(shù)共有的)

偶函數(shù)性質:

1、圖象關于y軸對稱

2、滿足f(—x)=f(x)

3、關于原點對稱的區(qū)間上單調性相反

4、如果一個函數(shù)既是奇函數(shù)有是偶函數(shù),那么有f(x)=0

5、定義域關于原點對稱(奇偶函數(shù)共有的)

常用運算方法:

奇函數(shù)±奇函數(shù)=奇函數(shù);

偶函數(shù)±偶函數(shù)=偶函數(shù);

奇函數(shù)×奇函數(shù)=偶函數(shù);

偶函數(shù)×偶函數(shù)=偶函數(shù);

奇函數(shù)×偶函數(shù)=奇函數(shù)。

證明方法:

設f(x),g(x)為奇函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函數(shù)加奇函數(shù)還是奇函數(shù);

若f(x),g(x)為偶函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函數(shù)加偶函數(shù)還是偶函數(shù)。

數(shù)學必修一總結第4篇函數(shù)的性質

函數(shù)的單調性(局部性質)

(1)增函數(shù)設函數(shù)y=f(x)的定義域為I,如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1

如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調減區(qū)間.

注意:函數(shù)的單調性是函數(shù)的局部性質;(2)圖象的特點如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3).函數(shù)單調區(qū)間與單調性的判定方法

(A)定義法:

○1任取x1,x2∈D,且x1

○2作差f(x1)-f(x2);

○3變形(通常是因式分解和配方);

○4定號(即判斷差f(x1)-f(x2)的正負);

○5下結論(指出函數(shù)f(x)在給定的區(qū)間D上的單調性).

(B)圖象法(從圖象上看升降)

(C)復合函數(shù)的單調性復合函數(shù)f[g(x)]的單調性與構成它的函數(shù)u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”

注意:函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間,不能把單調性相同的區(qū)間和在一起寫成其并集.

函數(shù)的奇偶性(整體性質)(1)偶函數(shù)一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).(2).奇函數(shù)一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).(3)具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱.利用定義判斷函數(shù)奇偶性的步驟:

○1首先確定函數(shù)的定義域,并判斷其是否關于原點對稱;

○2確定f(-x)與f(x)的關系;

○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

(3)利用定理,或借助函數(shù)的圖象判定.

9、函數(shù)的解析表達式(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關系時,一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域.

(2)求函數(shù)的解析式的主要方法有:

1)湊配法

2)待定系數(shù)法

3)換元法

4)消參法

函數(shù)最大(小)值(定義見課本p36頁)

○1利用二次函數(shù)的性質(配方法)求函數(shù)的最大(小)值

○2利用圖象求函數(shù)的最大(小)值

○3利用函數(shù)單調性的判斷函數(shù)的最大(小)值:如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數(shù)y=f(x)在x=b處有最大值f(b);如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

數(shù)學必修一總結第5篇集合間的基本關系

“包含”關系—子集

(1)定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集。記作:

注意:有兩種可能(1)A是B的一部分,;

(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作A

“相等”關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作A

③如果A?B,B?C,那么A?C

④如果A?B同時B?A那么A=B

不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集

數(shù)學必修一總結第6篇函數(shù)的有關概念

函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.注意:

定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。求函數(shù)的定義域時列不等式組的主要依據是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對數(shù)式的底必須大于零且不等于

(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數(shù)為零底不可以等于零,

(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.

?相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關);②定義域一致(兩點必須同時具備)

(見課本21頁相關例2)

值域:先考慮其定義域

(1)觀察法

(2)配方法

(3)代換法

函數(shù)圖象知識歸納

(1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上.

(2)畫法

A、描點法:

B、圖象變換法常用變換方法有三種

1)平移變換

2)伸縮變換

3)對稱變換

區(qū)間的概念(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數(shù)軸表示.

映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作f:A→B

分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達式的函數(shù)。

(2)各部分的自變量的取值情況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.補充:復合函數(shù)如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。

數(shù)學必修一總結第7篇一、集合有關概念

集合的含義

集合的中元素的三個特性:

(1)元素的確定性,

(2)元素的互異性,

(3)元素的無序性,

集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數(shù)集及其記法:非負整數(shù)集(即自然數(shù)集)記作:N

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關系

“包含”關系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

“相等”關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同時B?A那么A=B

不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

?有n個元素的集合,含有2n個子集,2n-1個真子集三、集合的運算運算類型交集并集補集定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作,即

CSA=韋恩圖示性質AA=A

AΦ=Φ

AB=BA

ABA

ABB

AA=A

AΦ=A

AB=BA

ABA

ABB

(CuA)(CuB)

=Cu(AB)

(CuA)(CuB)

=Cu(AB)

A(CuA)=U

A(CuA)=Φ.

例題:

下列四組對象,能構成集合的是()

A某班所有高個子的學生B著名的藝術家C一切很大的書D倒數(shù)等于它自身的實數(shù)

集合{a,b,c}的真子集共有個

若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關系是.

設集合A=,B=,若AB,則的取值范圍是

名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,兩種實驗都做錯得有4人,則這兩種實驗都做對的有人。

用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M=.

已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

數(shù)學必修一總結第8篇先看筆記后做作業(yè)。有的高中學生感到。老師講過的,自己已經聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區(qū)別。尤其練習題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

做題之后加強反思。學生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結一下自己的收獲。要總結出,這是一道什么內容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構建起一個內容與方法的科學的網絡系統(tǒng)。

配合老師主動學習。高中學生學習主動性要強。小學生,常常是完成作業(yè)就盡情的歡樂。初中生基本也是如此,聽話的孩子就能學習好。高中則不然,作業(yè)雖多,但是只知道做作業(yè)就絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一一具體指明,因此,高中學生必須提高自己的學習主動性。準備向將來的大學生的學習方法過渡。

課內重視聽講,課后及時復習。新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。

特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡。

建立良好的學習數(shù)學習慣。習慣是經過重復練習而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學習數(shù)學習慣,會使自己學習感到有序而輕松。

高中數(shù)學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養(yǎng)自己再學習能力。適當多做題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論