假設(shè)檢驗(yàn)統(tǒng)計(jì)學(xué)原理課件_第1頁
假設(shè)檢驗(yàn)統(tǒng)計(jì)學(xué)原理課件_第2頁
假設(shè)檢驗(yàn)統(tǒng)計(jì)學(xué)原理課件_第3頁
假設(shè)檢驗(yàn)統(tǒng)計(jì)學(xué)原理課件_第4頁
假設(shè)檢驗(yàn)統(tǒng)計(jì)學(xué)原理課件_第5頁
已閱讀5頁,還剩71頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

假設(shè)檢驗(yàn)統(tǒng)計(jì)學(xué)原理課件第一頁,共七十六頁,編輯于2023年,星期六假設(shè)檢驗(yàn)在統(tǒng)計(jì)方法中的地位統(tǒng)計(jì)方法描述統(tǒng)計(jì)推斷統(tǒng)計(jì)參數(shù)估計(jì)假設(shè)檢驗(yàn)第二頁,共七十六頁,編輯于2023年,星期六參數(shù)估計(jì)和假設(shè)檢驗(yàn)參數(shù)估計(jì)和假設(shè)檢驗(yàn)是統(tǒng)計(jì)推斷的兩個組成部分,都是利用樣本對總體進(jìn)行某種推斷,但推斷的角度不同。參數(shù)估計(jì)討論的是用樣本統(tǒng)計(jì)量估計(jì)總體參數(shù)的方法。假設(shè)檢驗(yàn)討論的是用樣本信息去檢驗(yàn)對總體參數(shù)的某種假設(shè)是否成立的程序和方法。第三頁,共七十六頁,編輯于2023年,星期六一、假設(shè)檢驗(yàn)的一般問題1、什么是假設(shè)檢驗(yàn)2、假設(shè)檢驗(yàn)的基本思想3、雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)4、假設(shè)檢驗(yàn)中的拒絕域和接受域5、假設(shè)檢驗(yàn)的兩類錯誤6、假設(shè)檢驗(yàn)的步驟第四頁,共七十六頁,編輯于2023年,星期六1、什么是假設(shè)檢驗(yàn)假設(shè)檢驗(yàn)是推論統(tǒng)計(jì)的重要內(nèi)容,是先對總體的未知數(shù)量特征作出某種假設(shè),然后抽取樣本,利用樣本信息對假設(shè)的正確性進(jìn)行判斷的過程。統(tǒng)計(jì)假設(shè)有參數(shù)假設(shè)、總體分布假設(shè)、相互關(guān)系假設(shè)(兩個變量是否獨(dú)立,兩個分布是否相同)等。參數(shù)假設(shè)是對總體參數(shù)的一種看法??傮w參數(shù)包括總體均值、總體比例、總體方差等。分析之前必需陳述。我認(rèn)為該企業(yè)生產(chǎn)的零件的平均長度為4厘米!第五頁,共七十六頁,編輯于2023年,星期六參數(shù)假設(shè)檢驗(yàn)參數(shù)假設(shè)檢驗(yàn)是通過樣本信息對關(guān)于總體參數(shù)的某種假設(shè)合理與否進(jìn)行檢驗(yàn)的過程。即先對未知的總體參數(shù)的取值提出某種假設(shè),然后抽取樣本,利用樣本信息去檢驗(yàn)這個假設(shè)是否成立。如果成立就接受這個假設(shè),如果不成立就放棄這個假設(shè)。下面主要討論參數(shù)假設(shè)檢驗(yàn)的問題。舉例如下:第六頁,共七十六頁,編輯于2023年,星期六參數(shù)假設(shè)檢驗(yàn)舉例例1:根據(jù)1989年的統(tǒng)計(jì)資料,某地女性新生兒的平均體重為3190克。為判斷該地1990年的女性新生兒體重與1989年相比有無顯著差異,從該地1990年的女性新生兒中隨機(jī)抽取30人,測得其平均體重為3210克。從樣本數(shù)據(jù)看,1990年女新生兒體重比1989年略高,但這種差異可能是由于抽樣的隨機(jī)性帶來的,也許這兩年新生兒的體重并沒有顯著差異。究竟是否存在顯著差異?可以先假設(shè)這兩年新生兒的體重沒有顯著差異,然后利用樣本信息檢驗(yàn)這個假設(shè)能否成立。這是一個關(guān)于總體均值的假設(shè)檢驗(yàn)問題。第七頁,共七十六頁,編輯于2023年,星期六參數(shù)假設(shè)檢驗(yàn)舉例例2:某公司進(jìn)口一批鋼筋,根據(jù)要求,鋼筋的平均拉力強(qiáng)度不能低于2000克,而供貨商強(qiáng)調(diào)其產(chǎn)品的平均拉力強(qiáng)度已達(dá)到了這一要求,這時需要進(jìn)口商對供貨商的說法是否真實(shí)作出判斷。進(jìn)口商可以先假設(shè)該批鋼筋的平均拉力強(qiáng)度不低于2000克,然后用樣本的平均拉力強(qiáng)度來檢驗(yàn)假設(shè)是否正確。這也是一個關(guān)于總體均值的假設(shè)檢驗(yàn)問題。第八頁,共七十六頁,編輯于2023年,星期六參數(shù)假設(shè)檢驗(yàn)舉例例3:某種大量生產(chǎn)的袋裝食品,按規(guī)定每袋重量不得少于250克,現(xiàn)從一批該種食品中任意抽取50袋,發(fā)現(xiàn)有6袋重量低于250克。若規(guī)定食品不符合標(biāo)準(zhǔn)的比例達(dá)到5%就不得出廠,問該批食品能否出廠。可以先假設(shè)該批食品的不合格率不超過5%,然后用樣本不合格率來檢驗(yàn)假設(shè)是否正確。這是一個關(guān)于總體比例的假設(shè)檢驗(yàn)問題。第九頁,共七十六頁,編輯于2023年,星期六2、假設(shè)檢驗(yàn)的基本思想假設(shè)檢驗(yàn)所依據(jù)的基本原理是小概率原理。什么是小概率?概率是0~1之間的一個數(shù),因此小概率就是接近0的一個數(shù)著名的英國統(tǒng)計(jì)家RonaldFisher把20分之1作為標(biāo)準(zhǔn),也就是0.05,從此0.05或比0.05小的概率都被認(rèn)為是小概率Fisher沒有任何深奧的理由解釋他為什么選擇0.05,只是說他忽然想起來的第十頁,共七十六頁,編輯于2023年,星期六什么是小概率原理?小概率原理——發(fā)生概率很小的隨機(jī)事件(小概率事件)在一次實(shí)驗(yàn)中幾乎是不可能發(fā)生的。根據(jù)這一原理,可以先假設(shè)總體參數(shù)的某項(xiàng)取值為真,也就是假設(shè)其發(fā)生的可能性很大,然后抽取一個樣本進(jìn)行觀察,如果樣本信息顯示出現(xiàn)了與事先假設(shè)相反的結(jié)果且與原假設(shè)差別很大,則說明原來假定的小概率事件在一次實(shí)驗(yàn)中發(fā)生了,這是一個違背小概率原理的不合理現(xiàn)象,因此有理由懷疑和拒絕原假設(shè);否則不能拒絕原假設(shè)。檢驗(yàn)中使用的小概率是檢驗(yàn)前人為指定的。第十一頁,共七十六頁,編輯于2023年,星期六小概率原理舉例:某工廠質(zhì)檢部門規(guī)定該廠產(chǎn)品次品率不超過4%方能出廠。今從1000件產(chǎn)品中抽出10件,經(jīng)檢驗(yàn)有4件次品,問這批產(chǎn)品是否能出廠?如果假設(shè)這批產(chǎn)品的次品率P≤4%,則可計(jì)算事件“抽10件產(chǎn)品有4件次品”的出現(xiàn)概率為:

可見,概率是相當(dāng)小的,1萬次實(shí)驗(yàn)中可能出現(xiàn)4次,然而概率如此小的事件,在一次實(shí)驗(yàn)中居然發(fā)生了,這是不合理的,而不合理的根源在于假設(shè)次品率P≤4%,因而認(rèn)為假設(shè)次品率P≤4%是不能成立的,故按質(zhì)檢部門的規(guī)定,這批產(chǎn)品不能出廠。第十二頁,共七十六頁,編輯于2023年,星期六假設(shè)檢驗(yàn)的基本思想...因此我們拒絕假設(shè)

=50...如果這是總體的真實(shí)均值樣本均值=50抽樣分布H0這個值不像我們應(yīng)該得到的樣本均值...20第十三頁,共七十六頁,編輯于2023年,星期六假設(shè)檢驗(yàn)的兩個特點(diǎn):第一,假設(shè)檢驗(yàn)采用邏輯上的反證法,即為了檢驗(yàn)一個假設(shè)是否成立,首先假設(shè)它是真的,然后對樣本進(jìn)行觀察,如果發(fā)現(xiàn)出現(xiàn)了不合理現(xiàn)象,則可以認(rèn)為假設(shè)是不合理的,拒絕假設(shè)。否則可以認(rèn)為假設(shè)是合理的,接受假設(shè)。第十四頁,共七十六頁,編輯于2023年,星期六第二,假設(shè)檢驗(yàn)采用的反證法帶有概率性質(zhì)。所謂假設(shè)的不合理不是絕對的,而是基于實(shí)踐中廣泛采用的小概率事件幾乎不可能發(fā)生的原則。至于事件的概率小到什么程度才算是小概率事件,并沒有統(tǒng)一的界定標(biāo)準(zhǔn),而是必須根據(jù)具體問題而定。如果一旦判斷失誤,錯誤地拒絕原假設(shè)會造成巨大損失,那么拒絕原假設(shè)的概率就應(yīng)定的小一些;如果一旦判斷失誤,錯誤地接受原假設(shè)會造成巨大損失,那么拒絕原假設(shè)的概率就應(yīng)定的大一些。小概率通常用α表示,又稱為檢驗(yàn)的顯著性水平。通常取α=0.05或α=0.01,即把概率不超過0.05或0.01的事件當(dāng)作小概率事件。第十五頁,共七十六頁,編輯于2023年,星期六原假設(shè)和備擇假設(shè)假設(shè)檢驗(yàn)中,我們稱作為檢驗(yàn)對象的待檢驗(yàn)假設(shè)為原假設(shè)或零假設(shè),用H0表示。原假設(shè)的對立假設(shè)稱為備擇假設(shè)或備選假設(shè),用H1表示。例如,設(shè)為總體均值的某一確定值。(1)對于總體均值是否等于某一確定值的原假設(shè)可以表示為:

H0:(如H0:

3190克)

其對應(yīng)的備擇假設(shè)則表示為:

H1:(如H1:≠3190克)第十六頁,共七十六頁,編輯于2023年,星期六原假設(shè)和備擇假設(shè)(2)對于總體均值X是否大于某一確定值X0

的原假設(shè)可以表示為:

H0:X≥X0(如H0:X≥2000克)

其對應(yīng)的備擇假設(shè)則表示為:

H1:X<X0(如H1:X

<2000克)(3)對于總體均值X是否小于某一確定值X0的原假設(shè)可以表示為:

H0:X≤X0(如H0:X≤

5%)

其對應(yīng)的備擇假設(shè)則表示為:

H1:X>X0(如H1:X>5%)

注意:原假設(shè)總是有等號:或或。第十七頁,共七十六頁,編輯于2023年,星期六3、雙側(cè)檢驗(yàn)和單側(cè)檢驗(yàn)根據(jù)假設(shè)的形式不同,假設(shè)檢驗(yàn)可以分為雙側(cè)假設(shè)檢驗(yàn)和單側(cè)假設(shè)檢驗(yàn)。若原假設(shè)是總體參數(shù)等于某一數(shù)值,如H0:X=X0,即備擇假設(shè)H1:X≠X0,那么只要X<X0和X>X0二者中有一個成立,就可以否定原假設(shè)。這種假設(shè)檢驗(yàn)稱為雙側(cè)檢驗(yàn)。若原假設(shè)是總體參數(shù)大于等于或小于等于某一數(shù)值,如H0:X≥X0(即H1:X<X0);或H0:X≤X0(即H1:X>X0),那么對于前者當(dāng)X<X0時,對于后者當(dāng)X>X0時,可以否定原假設(shè)。這種假設(shè)檢驗(yàn)稱為單側(cè)檢驗(yàn)。可以分為左側(cè)檢驗(yàn)和右側(cè)檢驗(yàn)。第十八頁,共七十六頁,編輯于2023年,星期六雙側(cè)檢驗(yàn)與單側(cè)檢驗(yàn)

(假設(shè)的形式)假設(shè)研究的問題(總體均值檢驗(yàn))雙側(cè)檢驗(yàn)左側(cè)檢驗(yàn)右側(cè)檢驗(yàn)H0X=X0X

X

0X

X

0H1X

≠X

0X

<X

0X

>X

0第十九頁,共七十六頁,編輯于2023年,星期六4、假設(shè)檢驗(yàn)中的拒絕域和接受域在規(guī)定了檢驗(yàn)的顯著性水平α后,根據(jù)容量為n的樣本,按照統(tǒng)計(jì)量的理論概率分布規(guī)律,可以確定據(jù)以判斷拒絕和接受原假設(shè)的檢驗(yàn)統(tǒng)計(jì)量的臨界值。臨界值將統(tǒng)計(jì)量的所有可能取值區(qū)間分為兩個互不相交的部分,即原假設(shè)的拒絕域和接受域。對于正態(tài)總體,總體均值的假設(shè)檢驗(yàn)可有如下圖示:第二十頁,共七十六頁,編輯于2023年,星期六正態(tài)總體,總體均值假設(shè)檢驗(yàn)圖示:

(1)雙側(cè)檢驗(yàn)設(shè)H0:X=X0,H1:X≠X0,有兩個臨界值,兩個拒絕域,每個拒絕域的面積為α/2。也稱雙尾檢驗(yàn)。雙側(cè)檢驗(yàn)示意圖X0第二十一頁,共七十六頁,編輯于2023年,星期六雙側(cè)檢驗(yàn)示意圖

(顯著性水平與拒絕域)

抽樣分布H0值臨界值臨界值a/2a/2

樣本統(tǒng)計(jì)量拒絕域拒絕域接受域1-置信水平第二十二頁,共七十六頁,編輯于2023年,星期六雙側(cè)檢驗(yàn)示意圖

(顯著性水平與拒絕域)

H0值臨界值臨界值a/2a/2

樣本統(tǒng)計(jì)量拒絕域拒絕域接受域抽樣分布1-置信水平觀察到的樣本統(tǒng)計(jì)量第二十三頁,共七十六頁,編輯于2023年,星期六雙側(cè)檢驗(yàn)示意圖

(顯著性水平與拒絕域)

H0值臨界值臨界值

a/2a/2

樣本統(tǒng)計(jì)量拒絕域拒絕域接受域抽樣分布1-置信水平觀察到的樣本統(tǒng)計(jì)量第二十四頁,共七十六頁,編輯于2023年,星期六雙側(cè)檢驗(yàn)示意圖

(顯著性水平與拒絕域)

H0值臨界值臨界值a/2a/2

樣本統(tǒng)計(jì)量拒絕域拒絕域接受域抽樣分布1-置信水平觀察到的樣本統(tǒng)計(jì)量第二十五頁,共七十六頁,編輯于2023年,星期六(2)單側(cè)檢驗(yàn)

有一個臨界值,一個拒絕域,拒絕域的面積為α。分為左側(cè)檢驗(yàn)和右側(cè)檢驗(yàn)兩種情況。

單側(cè)檢驗(yàn)示意圖(顯著性水平與拒絕域)

H0值臨界值a樣本統(tǒng)計(jì)量拒絕域接受域抽樣分布1-置信水平第二十六頁,共七十六頁,編輯于2023年,星期六左側(cè)檢驗(yàn)設(shè)H0:X≥X0,H1:X<X0;臨界值和拒絕域均在左側(cè)。也稱下限檢驗(yàn)。X0第二十七頁,共七十六頁,編輯于2023年,星期六左側(cè)檢驗(yàn)示意圖

(顯著性水平與拒絕域)

H0值臨界值a樣本統(tǒng)計(jì)量拒絕域接受域抽樣分布1-置信水平觀察到的樣本統(tǒng)計(jì)量第二十八頁,共七十六頁,編輯于2023年,星期六左側(cè)檢驗(yàn)示意圖

(顯著性水平與拒絕域)

H0值臨界值a樣本統(tǒng)計(jì)量拒絕域接受域抽樣分布1-置信水平觀察到的樣本統(tǒng)計(jì)量第二十九頁,共七十六頁,編輯于2023年,星期六右側(cè)檢驗(yàn)設(shè)H0:X≤X0,H1:X>X0;臨界值和拒絕域均在右側(cè)。也稱上限檢驗(yàn)。X0第三十頁,共七十六頁,編輯于2023年,星期六右側(cè)檢驗(yàn)示意圖

(顯著性水平與拒絕域)

H0值臨界值a樣本統(tǒng)計(jì)量拒絕域接受域抽樣分布1-置信水平觀察到的樣本統(tǒng)計(jì)量第三十一頁,共七十六頁,編輯于2023年,星期六右側(cè)檢驗(yàn)示意圖

(顯著性水平與拒絕域)

H0值臨界值a樣本統(tǒng)計(jì)量接受域抽樣分布1-置信水平拒絕域觀察到的樣本統(tǒng)計(jì)量第三十二頁,共七十六頁,編輯于2023年,星期六5、假設(shè)檢驗(yàn)的兩類錯誤根據(jù)假設(shè)檢驗(yàn)做出判斷無非下述四種情況:1、原假設(shè)真實(shí),并接受原假設(shè),判斷正確;2、原假設(shè)不真實(shí),且拒絕原假設(shè),判斷正確;3、原假設(shè)真實(shí),但拒絕原假設(shè),判斷錯誤;4、原假設(shè)不真實(shí),卻接受原假設(shè),判斷錯誤。假設(shè)檢驗(yàn)是依據(jù)樣本提供的信息進(jìn)行判斷,有犯錯誤的可能。所犯錯誤有兩種類型:第一類錯誤是原假設(shè)H0為真時,檢驗(yàn)結(jié)果把它當(dāng)成不真而拒絕了。犯這種錯誤的概率用α表示,也稱作α錯誤(αerror)或棄真錯誤。第二類錯誤是原假設(shè)H0不為真時,檢驗(yàn)結(jié)果把它當(dāng)成真而接受了。犯這種錯誤的概率用β表示,也稱作β錯誤(βerror)或取偽錯誤。第三十三頁,共七十六頁,編輯于2023年,星期六假設(shè)檢驗(yàn)的兩類錯誤

正確決策和犯錯誤的概率可以歸納為下表:假設(shè)檢驗(yàn)中各種可能結(jié)果的概率接受H0拒絕H0,接受H1H0

為真 1-α(正確決策)α(棄真錯誤)H0為偽β(取偽錯誤) 1-β(正確決策)第三十四頁,共七十六頁,編輯于2023年,星期六假設(shè)檢驗(yàn)兩類錯誤關(guān)系的圖示

以單側(cè)上限檢驗(yàn)為例,設(shè)H0:X≤X0,

H1:X>X0從上圖可以看出,如果臨界值沿水平方向右移,α將變小而β變大,即若減小α錯誤,就會增大犯β錯誤的機(jī)會;如果臨界值沿水平方向左移,α將變大而β變小,即若減小β錯誤,也會增大犯α錯誤的機(jī)會。圖(a)

X≤X0H0為真圖(b)X=X1>X0H0為偽第三十五頁,共七十六頁,編輯于2023年,星期六錯誤和錯誤的關(guān)系你不能同時減少兩類錯誤!和的關(guān)系就像翹翹板,小就大,大就小在樣本容量n一定的情況下,假設(shè)檢驗(yàn)不能同時做到犯α和β兩類錯誤的概率都很小。若減小α錯誤,就會增大犯β錯誤的機(jī)會;若減小β錯誤,也會增大犯α錯誤的機(jī)會。要使α和β同時變小只有增大樣本容量。但樣本容量增加要受人力、經(jīng)費(fèi)、時間等很多因素的限制,無限制增加樣本容量就會使抽樣調(diào)查失去意義。因此假設(shè)檢驗(yàn)需要慎重考慮對兩類錯誤進(jìn)行控制的問題。第三十六頁,共七十六頁,編輯于2023年,星期六兩類錯誤的控制準(zhǔn)則假設(shè)檢驗(yàn)中人們普遍執(zhí)行同一準(zhǔn)則:首先控制棄真錯誤(α錯誤)。假設(shè)檢驗(yàn)的基本法則以α為顯著性水平就體現(xiàn)了這一原則。兩個理由:統(tǒng)計(jì)推斷中大家都遵循統(tǒng)一的準(zhǔn)則,討論問題會比較方便。更重要的是:原假設(shè)常常是明確的,而備擇假設(shè)往往是模糊的。如H0:X=X0很清楚,而H1:X≠X0則不太清楚,是X<X0還是X>X0?大多少小多少都不清楚。對含義清晰的數(shù)量標(biāo)準(zhǔn)進(jìn)行檢驗(yàn)更容易被接受。因此,第一類錯誤成為控制兩類錯誤的重點(diǎn)。第三十七頁,共七十六頁,編輯于2023年,星期六6、假設(shè)檢驗(yàn)的步驟㈠根據(jù)研究需要提出原假設(shè)H0和備擇假設(shè)H1㈡確定適當(dāng)?shù)臋z驗(yàn)統(tǒng)計(jì)量㈢確定顯著性水平α和臨界值及拒絕域㈣根據(jù)樣本數(shù)據(jù)計(jì)算檢驗(yàn)統(tǒng)計(jì)量的值(或P值)㈤將檢驗(yàn)統(tǒng)計(jì)量值與臨界值比較,作出拒絕或接受原假設(shè)的決策第三十八頁,共七十六頁,編輯于2023年,星期六假設(shè)檢驗(yàn)的步驟

㈠根據(jù)研究需要提出原假設(shè)H0和備擇假設(shè)H1應(yīng)該注意:

⑴對任一假設(shè)檢驗(yàn)問題,其所有可能結(jié)果均應(yīng)包括在所提出的兩個對立假設(shè)中,原假設(shè)與對立假設(shè)總有一個、也只能有一個成立。⑵原假設(shè)一定要有等號:或或。

原假設(shè)不是隨意提出的,應(yīng)該本著“不輕易拒絕原假設(shè)”的原則。第三十九頁,共七十六頁,編輯于2023年,星期六雙側(cè)檢驗(yàn)原假設(shè)與備擇假設(shè)的確定雙側(cè)檢驗(yàn)屬于決策中的假設(shè)檢驗(yàn)。即不論是拒絕H0還是接受H0,都必需采取相應(yīng)的行動措施。例如,某種零件的尺寸,要求其平均長度為10厘米,大于或小于10厘米均屬于不合格。待檢驗(yàn)問題是該企業(yè)生產(chǎn)的零件平均長度是10厘米嗎?(屬于決策中的假設(shè))則建立的原假設(shè)與備擇假設(shè)應(yīng)為

H0:X

=10H1:X10第四十頁,共七十六頁,編輯于2023年,星期六單側(cè)檢驗(yàn)原假設(shè)與備擇假設(shè)的確定應(yīng)區(qū)別不同情況采取不同的建立假設(shè)方法。對于檢驗(yàn)?zāi)稠?xiàng)研究是否達(dá)到了預(yù)期效果一般是將研究的預(yù)期效果(希望、想要證明的假設(shè))作為備擇假設(shè)H1,將認(rèn)為研究結(jié)果無效作為原假設(shè)H0。先確立備擇假設(shè)H1。因?yàn)橹挥挟?dāng)檢驗(yàn)結(jié)果與原假設(shè)有明顯差別時才能拒絕原假設(shè)而接受備擇假設(shè),原假設(shè)不會輕易被拒絕,就使得希望得到的結(jié)論不會輕易被接受,從而減少結(jié)論錯誤。例如,有研究預(yù)計(jì),采用新技術(shù)生產(chǎn)后將會使某產(chǎn)品的使用壽命明顯延長到1500小時以上。則建立的原假設(shè)與備擇假設(shè)應(yīng)為:

H0:X1500H1:X1500例如,有研究預(yù)計(jì),改進(jìn)生產(chǎn)工藝后會使某產(chǎn)品的廢品率降低到2%以下。則建立的原假設(shè)與備擇假設(shè)應(yīng)為:

H0:X

2%H1:X<2%第四十一頁,共七十六頁,編輯于2023年,星期六單側(cè)檢驗(yàn)原假設(shè)與備擇假設(shè)的確定對于檢驗(yàn)?zāi)稠?xiàng)聲明的有效性一般可將所作的聲明作為原假設(shè)。將對該聲明的質(zhì)疑作為備擇假設(shè)。先確立原假設(shè)H0。因?yàn)槌怯凶C據(jù)表明“聲明”無效,否則就應(yīng)認(rèn)為該“聲明”是有效的。例如,某燈泡制造商聲稱,該企業(yè)生產(chǎn)的燈泡平均使用壽命在1000小時以上。通常除非樣本能提供證據(jù)表明使用壽命在1000小時以下,否則就應(yīng)認(rèn)為廠商的聲稱是正確的。建立的原假設(shè)與備擇假設(shè)應(yīng)為:

H0:X1000H1:X<1000第四十二頁,共七十六頁,編輯于2023年,星期六對于上述問題還可以結(jié)合不同背景建立假設(shè)。同樣的問題背景不同可以采用不同的原假設(shè)。例如,一商店經(jīng)常從某工廠購進(jìn)某種商品,該商品質(zhì)量指標(biāo)為X,X值愈大商品質(zhì)量愈好。商店提出的進(jìn)貨條件是按批驗(yàn)收,只有通過假設(shè)“X≥X0”檢驗(yàn)的批次才能接受。有兩種可能情況:第四十三頁,共七十六頁,編輯于2023年,星期六⑴如果根據(jù)過去較長時間購貨記錄,商店相信該廠產(chǎn)品質(zhì)量好,于是同意把原假設(shè)定為X≥X0,而且選擇較低的檢驗(yàn)顯著性水平。這對工廠是有利的,使得達(dá)到質(zhì)量標(biāo)準(zhǔn)的產(chǎn)品以很小的概率被拒收。雖然這會使商店面臨接受不合標(biāo)準(zhǔn)產(chǎn)品的風(fēng)險,但歷史記錄顯示出現(xiàn)這種情況的可能性很小,而且商店也可因此獲得較好的貨源。⑵如果過去一段時期的記錄表明,該廠產(chǎn)品質(zhì)量并不理想,商店則會堅(jiān)持以X≤X0為原假設(shè),并選定較小的檢驗(yàn)顯著性水平。這對商店是有利的,不會輕易地拒絕原假設(shè),有1-α的可能把劣質(zhì)產(chǎn)品拒之門外。第四十四頁,共七十六頁,編輯于2023年,星期六㈡確定適當(dāng)?shù)臋z驗(yàn)統(tǒng)計(jì)量假設(shè)檢驗(yàn)根據(jù)檢驗(yàn)內(nèi)容和條件不同需要采用不同的檢驗(yàn)統(tǒng)計(jì)量。在一個正態(tài)總體的參數(shù)檢驗(yàn)中,Z統(tǒng)計(jì)量和t統(tǒng)計(jì)量常用于均值和比例的檢驗(yàn),2統(tǒng)計(jì)量用于方差的檢驗(yàn)。選擇統(tǒng)計(jì)量需考慮的因素有被檢驗(yàn)的參數(shù)類型、總體方差是否已知、用于檢驗(yàn)的樣本量大小等。Z檢驗(yàn)(單尾和雙尾)

t檢驗(yàn)(單尾和雙尾)Z檢驗(yàn)(單尾和雙尾)

2檢驗(yàn)(單尾和雙尾)均值一個總體成數(shù)方差第四十五頁,共七十六頁,編輯于2023年,星期六㈢確定顯著性水平α和臨界值及拒絕域顯著性水平α是當(dāng)原假設(shè)為正確時被拒絕的概率,是由研究者事先確定的。顯著性水平的大小應(yīng)根據(jù)研究需要的精確度和可靠性而定。通常取α=0.05或α=0.01,即接受原假設(shè)的決定是正確的可能性(概率)為95%或99%。根據(jù)給定的顯著性水平,查表得出相應(yīng)的臨界值,同時指定拒絕域。第四十六頁,共七十六頁,編輯于2023年,星期六㈣根據(jù)樣本數(shù)據(jù)計(jì)算檢驗(yàn)統(tǒng)計(jì)量的值例如,總體標(biāo)準(zhǔn)差σ已知時根據(jù)樣本均值計(jì)算統(tǒng)計(jì)量Z的公式為㈤將檢驗(yàn)統(tǒng)計(jì)量的值與臨界值比較,作出拒絕或接受原假設(shè)的決策如果檢驗(yàn)統(tǒng)計(jì)量的值落入拒絕域,則拒絕原假設(shè),接受備擇假設(shè);如果檢驗(yàn)統(tǒng)計(jì)量的值落入接受域,則接受原假設(shè),拒絕備擇假設(shè)。第四十七頁,共七十六頁,編輯于2023年,星期六二、總體均值的假設(shè)檢驗(yàn)

第四十八頁,共七十六頁,編輯于2023年,星期六㈠總體方差σ2已知時均值的檢驗(yàn)假定條件總體服從正態(tài)分布若總體不服從正態(tài)分布,可用正態(tài)分布來近似(要求n30)使用Z統(tǒng)計(jì)量第四十九頁,共七十六頁,編輯于2023年,星期六1.總體方差2

已知時均值的雙側(cè)檢驗(yàn)

(舉例)【例4】某機(jī)床廠加工一種零件,根據(jù)經(jīng)驗(yàn)知道,以前加工零件的橢圓度近似服從正態(tài)分布,其總體均值為X0=0.081mm,總體標(biāo)準(zhǔn)差為=0.025。今換一種新機(jī)床進(jìn)行加工,抽取n=200個零件進(jìn)行檢驗(yàn),得到的橢圓度均值為0.076mm。試問新機(jī)床加工零件的橢圓度均值與以前有無顯著差異?(=0.05)屬于決策中的假設(shè)!第五十頁,共七十六頁,編輯于2023年,星期六解:已知:X0=0.081mm,=0.025,n=200,

提出假設(shè):假定橢圓度與以前無顯著差異

H0:X=0.081H1:X0.081=0.05雙側(cè)檢驗(yàn)/2=0.025

查表得臨界值:Z0.025=±1.96Z01.96-1.960.025拒絕H0拒絕H00.025決策:∵Z值落入拒絕域,∴在=0.05的水平上拒絕H0結(jié)論:有證據(jù)表明新機(jī)床加工的零件的橢圓度與以前有顯著差異得兩個拒絕域:

(-∞,-1.96)和(1.96,∞)計(jì)算檢驗(yàn)統(tǒng)計(jì)量值:第五十一頁,共七十六頁,編輯于2023年,星期六2.總體方差2

已知時均值的單側(cè)檢驗(yàn)

左側(cè):H0:XX0

H1:X<X0統(tǒng)計(jì)量值必須顯著地小于X0才能拒絕H0,大于X0的值滿足H0,不能拒絕Z0拒絕H0右側(cè):H0:XX0

H1:X>X0統(tǒng)計(jì)量值必須顯著地大于X0才能拒絕H0,小于X0的值滿足H0,不能拒絕Z0拒絕H0第五十二頁,共七十六頁,編輯于2023年,星期六總體方差2已知時均值的單側(cè)檢驗(yàn)

(左檢驗(yàn)舉例)【例5】某批發(fā)商欲從生產(chǎn)廠家購進(jìn)一批燈泡,根據(jù)合同規(guī)定,燈泡的使用壽命平均不能低于1000小時。已知燈泡使用壽命服從正態(tài)分布,標(biāo)準(zhǔn)差為20小時。在總體中隨機(jī)抽取100只燈泡,測得樣本均值為960小時。批發(fā)商是否應(yīng)該購買這批燈泡?(=0.05)屬于檢驗(yàn)聲明的有效性!第五十三頁,共七十六頁,編輯于2023年,星期六解:已知:X0=1000小時,=20,n=100,

提出假設(shè):假定使用壽命平均不低于1000小時

H0:X

1000H1:X<1000=0.05左檢驗(yàn)臨界值為負(fù)得臨界值:-Z0.05=-1.645計(jì)算檢驗(yàn)統(tǒng)計(jì)量值:∵Z值落入拒絕域,∴在=0.05的顯著性水平上拒絕H0,接受H1有證據(jù)表明這批燈泡的使用壽命低于1000小時決策:結(jié)論:-1.645Z0拒絕域得拒絕域:(-∞,-1.645)第五十四頁,共七十六頁,編輯于2023年,星期六總體方差2已知時均值的單側(cè)檢驗(yàn)

(右檢驗(yàn)舉例)【例6】根據(jù)過去大量資料,某廠生產(chǎn)的燈泡的使用壽命服從正態(tài)分布N~(1020,1002)?,F(xiàn)從最近生產(chǎn)的一批產(chǎn)品中隨機(jī)抽取16只,測得樣本平均壽命為1080小時。試在0.05的顯著性水平下判斷這批產(chǎn)品的使用壽命是否有顯著提高?(=0.05)屬于研究中的假設(shè)!第五十五頁,共七十六頁,編輯于2023年,星期六解:已知:0=1020小時,=100,n=16,

提出假設(shè):假定使用壽命沒有顯著提高

H0:X1020H1:X>1020=0.05右檢驗(yàn)臨界值為正得臨界值:Z0.05=1.645計(jì)算檢驗(yàn)統(tǒng)計(jì)量值:

∵Z值落入拒絕域,∴在=0.05的顯著性水平上拒絕H0,接受H1有證據(jù)表明這批燈泡的使用壽命有顯著提高決策:結(jié)論:Z0拒絕域0.051.645得拒絕域:(1.645,∞)第五十六頁,共七十六頁,編輯于2023年,星期六㈡總體方差2未知時均值的檢驗(yàn)假定條件:總體為正態(tài)分布2未知時檢驗(yàn)所依賴信息有所減少,樣本統(tǒng)計(jì)量服從t分布,與正態(tài)分布相比在概率相同條件下t分布臨界點(diǎn)距中心的距離更遠(yuǎn),意味著推斷精度有所下降使用t

統(tǒng)計(jì)量,其自由度為n-1,s為樣本標(biāo)準(zhǔn)差n較小時t分布與z分布差異明顯,隨著n增大二者差異逐漸縮小,因此在大樣本條件下2未知也可以用z統(tǒng)計(jì)量進(jìn)行檢驗(yàn)第五十七頁,共七十六頁,編輯于2023年,星期六1.總體方差2未知時均值的雙側(cè)檢驗(yàn)

(舉例)【例7】某廠采用自動包裝機(jī)分裝產(chǎn)品,假定每包產(chǎn)品的重量服從正態(tài)分布,每包標(biāo)準(zhǔn)重量為1000克。某日隨機(jī)抽查9包,測得樣本平均重量為986克,樣本標(biāo)準(zhǔn)差為24克。試問在0.05的顯著性水平上,能否認(rèn)為這天自動包裝機(jī)工作正常?屬于決策中的假設(shè)!第五十八頁,共七十六頁,編輯于2023年,星期六解:已知:X0=1000克,s=24,n=9,提出假設(shè):假定每包產(chǎn)品的重量與標(biāo)準(zhǔn)重量無顯著差異

H0:X=1000H1:X1000=0.05雙側(cè)檢驗(yàn)/2=0.025df=9-1=8得臨界值:t0.025(8)=±2.306計(jì)算檢驗(yàn)統(tǒng)計(jì)量值:

∵t值落入接受域,∴在=0.05的顯著性水平上接受H0有證據(jù)表明這天自動包裝機(jī)工作正常決策:結(jié)論:t02.306-2.3060.025拒絕H0拒絕H00.025得兩個拒絕域:

(-∞,-2.306)和(2.306,∞)第五十九頁,共七十六頁,編輯于2023年,星期六2.總體方差2未知時均值的單側(cè)檢驗(yàn)

(舉例)【例8】一個汽車輪胎制造商聲稱,某一等級的輪胎的平均壽命在一定的汽車重量和正常行駛條件下大于40000公里,對一個由20個輪胎組成的隨機(jī)樣本作了試驗(yàn),測得平均值為41000公里,標(biāo)準(zhǔn)差為5000公里。已知輪胎壽命的公里數(shù)服從正態(tài)分布,我們能否根據(jù)這些數(shù)據(jù)作出結(jié)論,該制造商的產(chǎn)品同他所說的標(biāo)準(zhǔn)相符?(=0.05)屬于檢驗(yàn)聲明有效性的假設(shè)!第六十頁,共七十六頁,編輯于2023年,星期六解:已知:X0=40000公里,s=5000,n=20,

提出假設(shè):假定平均壽命不低于40000公里

H0:

X40000H1:X<40000=0.05左檢驗(yàn)臨界值為負(fù)df=20-1=19得臨界值:-t0.05(19)=-1.7291計(jì)算檢驗(yàn)統(tǒng)計(jì)量值:∵t值落入接受域,∴在=0.05的顯著性水平上接受H0結(jié)論:

有證據(jù)表明輪胎使用壽命顯著地大于40000公里,可以認(rèn)為該制造商的聲稱是可信的。決策:

-1.7291t0拒絕域0.05得拒絕域:(-∞,-1.7291)第六十一頁,共七十六頁,編輯于2023年,星期六三、總體成數(shù)的假設(shè)檢驗(yàn)

第六十二頁,共七十六頁,編輯于2023年,星期六總體成數(shù)的檢驗(yàn)1.假定條件有兩類結(jié)果總體服從二項(xiàng)分布可用正態(tài)分布來近似(要求大樣本,np>5,n(1-p)>5)2.使用Z統(tǒng)計(jì)量

P0為假設(shè)的總體成數(shù)。分母為樣本成數(shù)的抽樣標(biāo)準(zhǔn)差,一般采用P0計(jì)算,也有人認(rèn)為可以用樣本成數(shù)p計(jì)算。第六十三頁,共七十六頁,編輯于2023年,星期六總體成數(shù)的檢驗(yàn)(雙側(cè)檢驗(yàn)舉例)【例9】某研究者估計(jì)本市居民家庭的電腦擁有率為30%?,F(xiàn)隨機(jī)抽查了200個家庭,其中68個家庭擁有電腦。試問研究者的估計(jì)是否可信?(=0.05)屬于決策中的假設(shè)!第六十四頁,共七十六頁,編輯于2023年,星期六解:已知:P0=0.3,n=200,

提出假設(shè):假定估計(jì)可信

H0:P0=0.3H1:p00.3=0.05雙側(cè)檢驗(yàn)/2=0.025

得臨界值:Z0.025=±1.96計(jì)算檢驗(yàn)統(tǒng)計(jì)量值:∵Z值落入接受域,∴在=0.05的水平上接受H0有證據(jù)表明研究者的估計(jì)可信決策:結(jié)論:Z01.96-1.960.025拒絕H0拒絕H00.025得兩個拒絕域:

(-∞,-1.96)和(1.96,∞)第六十五頁,共七十六頁,編輯于2023年,星期六總體成數(shù)的檢驗(yàn)(單側(cè)檢驗(yàn)舉例)【例10】某公司估計(jì)有75%以上的消費(fèi)者滿意其產(chǎn)品的質(zhì)量。某調(diào)查公司受該公司委托調(diào)查此估計(jì)是否屬實(shí)?,F(xiàn)隨機(jī)抽查了625位消費(fèi)者,其中表示對該公司產(chǎn)品滿意的有500人。試問該公司的估計(jì)是否屬實(shí)?(=0.05)屬于研究中的假設(shè)!第六十六頁,共七十六頁,編輯于2023年,星期六解:已知:P0=0.75,n=625,

提出假設(shè):假定滿意者不超過75%

H0:P0.75H1:P>0.75=0.05右檢驗(yàn)臨界值為正得臨界值:Z0.05=1.645計(jì)算檢驗(yàn)統(tǒng)計(jì)量值:

∵Z值落入拒絕域,∴在=0.05的水平上拒絕H0,接受H1有證據(jù)表明該公司的估計(jì)屬實(shí)決策:結(jié)論:Z0拒絕域0.051.645得拒絕域:(1.645,∞)第六十七頁,共七十六頁,編輯于2023年,星期六關(guān)于單側(cè)檢驗(yàn)如何建立假設(shè)單側(cè)檢驗(yàn)應(yīng)區(qū)別不同情況采取不同的建立假設(shè)方法??梢园严M?想要)證明的假設(shè)作為備擇假設(shè),將相反情況作為原假設(shè)。由于原假設(shè)不容易被拒絕,因此只有檢驗(yàn)結(jié)果與原假設(shè)有明顯差別時才能拒絕原假設(shè)而接受備擇假設(shè),這就使得希望得到的結(jié)論不是輕易被接受,從而減少結(jié)論錯誤。第六十八頁,共七十六

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論