




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
重慶城廂中學(xué)高三數(shù)學(xué)文下學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.已知函數(shù)f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0?A則實(shí)數(shù)b的取值范圍是(
) A.0≤b≤4 B.b≤0或b≥4 C.0≤b<4 D.b<0或b≥4參考答案:D考點(diǎn):二次函數(shù)的性質(zhì).專題:函數(shù)的性質(zhì)及應(yīng)用.分析:根據(jù)已知條件容易求出c=0,并判斷出f(x)有非零實(shí)根,從而解f(x)=0即可得到A={0,﹣b}.而由f(f(x))=0得到x(x+b)(x2+bx+b)=0,顯然0,﹣b是方程的實(shí)根,從而判斷出方程x2+bx+b=0有實(shí)根,并且實(shí)根為,從而得到△≥0并b≠0,這樣解不等式即得實(shí)數(shù)b的取值范圍.解答: 解:由題意可得,A是函數(shù)f(x)的零點(diǎn)構(gòu)成的集合;由f(f(x))=0,可得(x2+bx+c)2+b(x2+bx+c)+c=0,把x2+bx+c=0代入,解得c=0;∴f(x)=x2+bx;存在x0∈B,x0?A;∴f(f(x0))=0,而f(x0)≠0;∴x0≠0;∴說明f(x)=0有非零實(shí)根;∴解f(x)=0得x=0,或﹣b,b≠0;∴A={0,﹣b};f(f(x))=(x2+bx)2+b(x2+bx)=x(x+b)(x2+bx+b);∵存在x0∈B,x0≠A;∴方程x2+bx+b=0有解;∴△=b2﹣4b≥0;又b≠0;∴解得b<0,或b≥4;∴實(shí)數(shù)b的取值范圍為{b|b<0或b≥4}.故選:D.點(diǎn)評:考查描述法表示集合,知道集合A表示函數(shù)f(x)的零點(diǎn)組成的集合,提取公因式解高次方程的方法,一元二次方程有無解和判別式△取值的關(guān)系.2.下列函數(shù)f(x)中,滿足“對任意x1、x2∈(0,+∞),當(dāng)x1<x2時(shí),都有f(x1)>f(x2)的是()A.f(x)= B.f(x)=(x﹣1)2 C.f(x)=ex D.f(x)=ln(x+1)參考答案:A【考點(diǎn)】函數(shù)單調(diào)性的判斷與證明.【專題】綜合題.【分析】根據(jù)題意和函數(shù)單調(diào)性的定義,判斷出函數(shù)在(0,+∞)上是減函數(shù),再根據(jù)反比例函數(shù)、二次函數(shù)、指數(shù)函數(shù)和數(shù)函數(shù)的單調(diào)性進(jìn)行判斷.【解答】解:∵對任意x1、x2∈(0,+∞),當(dāng)x1<x2時(shí),都有f(x1)>f(x2),∴函數(shù)在(0,+∞)上是減函數(shù);A、由反比例函數(shù)的性質(zhì)知,此函數(shù)函數(shù)在(0,+∞)上是減函數(shù),故A正確;B、由于f(x)=(x﹣1)2,由二次函數(shù)的性質(zhì)知,在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù),故B不對;C、由于e>1,則由指數(shù)函數(shù)的單調(diào)性知,在(0,+∞)上是增函數(shù),故C不對;D、根據(jù)對數(shù)的整數(shù)大于零得,函數(shù)的定義域?yàn)椋ī?,+∞),由于e>1,則由對數(shù)函數(shù)的單調(diào)性知,在(0,+∞)上是增函數(shù),故D不對;故選A.【點(diǎn)評】本題考查了函數(shù)單調(diào)性的定義,以及基本初等函數(shù)的單調(diào)性,即反比例函數(shù)、二次函數(shù)、指數(shù)函數(shù)和數(shù)函數(shù)的單調(diào)性的應(yīng)用.3.定義域?yàn)榈呐己瘮?shù)滿足對,有,且當(dāng)時(shí),,若函數(shù)在上至少有三個(gè)零點(diǎn),則的取值范圍是(
)A. B. C. D.參考答案:B4.設(shè),點(diǎn)P(a,a+1)為△ABC的垂心,則=A.(-2,3)
B.
C.
D.(3,-2)參考答案:C略5.已知在平面直角坐標(biāo)系上的區(qū)域由不等式組給定.目標(biāo)函數(shù)的最大值為A.
B.
C.
D.參考答案:A6.已知函數(shù)函數(shù),若存在,使得成立,則實(shí)數(shù)的取值范圍是A.
B.
C.
D.參考答案:A7.命題“,使得”的否定是(
)A.,都有
B.,都有C.,都有
D.,都有參考答案:D由特稱命題的否定得命題“,使得”的否定是,都有.故選D.
8. 一個(gè)化肥廠生產(chǎn)甲、乙兩種肥料,生產(chǎn)一車皮甲種肥料需要磷酸鹽4噸、硝酸鹽18噸;生產(chǎn)一車皮乙種肥料需要磷酸鹽1噸、硝酸鹽15噸.已知生產(chǎn)一車皮甲種肥料產(chǎn)生的利潤是10萬元,生產(chǎn)一車皮乙種肥料產(chǎn)生的利潤是5萬元.現(xiàn)庫存磷酸鹽10噸、硝酸鹽66噸.如果該廠合理安排生產(chǎn)計(jì)劃,則可以獲得的最大利潤是(A)50萬元 (B)30萬元 (C)25萬元 (D)22萬元參考答案:B略9.已知數(shù)列{an}滿足a1a2a3…an=2(n∈N*),且對任意n∈N*都有++…+<t,則t的取值范圍為()A.(,+∞) B.[,+∞) C.(,+∞) D.[,+∞)參考答案:D【考點(diǎn)】數(shù)列與不等式的綜合.【分析】數(shù)列{an}滿足a1a2a3…an=2(n∈N*),n=1時(shí),a1=2;n≥2時(shí),a1a2a3…an﹣1=,可得an=22n﹣1.即=,利用等比數(shù)列的求和公式與放縮法即可得出.【解答】解:∵數(shù)列{an}滿足a1a2a3…an=2(n∈N*),∴n=1時(shí),a1=2;n≥2時(shí),a1a2a3…an﹣1=,可得an=22n﹣1.∴=,數(shù)列為等比數(shù)列,首項(xiàng)為,公比為.∴++…+==.∵對任意n∈N*都有++…+<t,則t的取值范圍為.故選:D.【點(diǎn)評】本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的求和公式、放縮法,考查了推理能力與計(jì)算能力,屬于中檔題.10.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為(
)A.B.C.D.參考答案:B略二、填空題:本大題共7小題,每小題4分,共28分11.函數(shù)的最大值是
參考答案:略12.如圖,互不相同的點(diǎn)和分別在角O的兩條邊上,所有相互平行,且所有梯形的面積均相等。設(shè)若則數(shù)列的通項(xiàng)公式是____________。參考答案:an=13.已知函數(shù),若___________.參考答案:14.已知角φ的終邊經(jīng)過點(diǎn)P(1,-2),函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象的相鄰兩條對稱軸之間的距離為,則=__________.參考答案:15.若變量x,y滿足約束條件,則z=2x﹣y的最大值為
.參考答案:6【考點(diǎn)】簡單線性規(guī)劃.【分析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【解答】解:由約束條件作出可行域如圖,聯(lián)立,解得A(4,2),化目標(biāo)函數(shù)z=2x﹣y為y=2x﹣z,由圖可知,當(dāng)直線y=2x﹣z過點(diǎn)A時(shí),直線在y軸上的截距最小,z有最大值為6.故答案為:6.16.已知集合那么_________.參考答案:17.已知函數(shù)f(x)=ax(a>0,且a≠1)在區(qū)間[1,2]上的最大值與最小值的差為,則a的值為________.參考答案:或三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本小題滿分13分)小明下學(xué)期就要上大學(xué)了,他了解到大學(xué)生都要通過CET4(國家英語四級)考試,需要詞匯量在高中的基礎(chǔ)上,再增加大約1100個(gè).他準(zhǔn)備從新學(xué)期開始,利用一學(xué)期(以20周計(jì))完成詞匯量的要求,早日通過CET4考試。設(shè)計(jì)了2套方案:方案一:第一周背50個(gè)單詞,以后每周都比上一周多背2個(gè),直到全部單詞背完;方案二:每周背同樣數(shù)量的單詞,在同一周內(nèi),星期一背2個(gè)單詞,星期二背的是星期一的2倍,同樣的規(guī)律一直背到星期五,周末兩天休息。試問:(Ⅰ)按照方案一,第10周要背多少個(gè)單詞?(Ⅱ)如果想較快背完單詞,請說明選擇哪一種方案比較合適?參考答案:(Ⅰ)根據(jù)題意,方案一每周所背的單詞成等差數(shù)列,其中,則從而,按照方案一,第10周要背68個(gè)單詞。(Ⅱ)因?yàn)樵诘炔顢?shù)列中,,從而數(shù)列是單調(diào)遞增數(shù)列設(shè)前項(xiàng)和為,計(jì)算得按照方案二,每周從星期一到星期五背誦的單詞成等比數(shù)列,其中,每周背誦的單詞為2+4+8+16+32=62則到第周背誦的單詞量,計(jì)算得所以,想較快背完單詞,選擇方案一比較合適.19.(本小題滿分10分)已知,若是單元素集,求實(shí)數(shù)的取值范圍.參考答案:是單元素集與有一個(gè)交點(diǎn)即方程在有一個(gè)根,
解得
解得
若,方程不成立
若,則,此時(shí)方程根為或
在上有兩個(gè)根,不符合題意
綜上或20.已知等差數(shù)列{an}的公差不為零,,且成等比數(shù)列。(Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)設(shè),求數(shù)列{bn}前2019項(xiàng)的和.參考答案:(Ⅰ)等差數(shù)列的公差為,()的通項(xiàng)公式為:(Ⅱ)的2019項(xiàng)的和為:21.△ABC的內(nèi)角A,B,C所對邊分別為a,b,c,已知△ABC的面積為,,,;(1)求邊b;(2)延長BC至點(diǎn)D,使,連接AD,點(diǎn)E為AD中點(diǎn),求。
參考答案:(1)…①……2分由余弦定理,…②…………4分聯(lián)立①②可得或…………6分又,…………7分(2)如圖,為中點(diǎn),,…………8分故…………10分即…………12分22.已知袋中裝有大小相同的2個(gè)白球,2個(gè)紅球和1個(gè)黃球.一項(xiàng)游戲規(guī)定:每個(gè)白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個(gè)球,將3個(gè)球?qū)?yīng)的分值相加后稱為該局的得分,計(jì)算完得分后將球放回袋中.當(dāng)出現(xiàn)第n局得n(n∈N*)分的情況就算游戲過關(guān),同時(shí)游戲結(jié)束,若四局過后仍未過關(guān),游戲也結(jié)束.(1)求在一局游戲中得3分的概率;(2)求游戲結(jié)束時(shí)局?jǐn)?shù)X的分布列和數(shù)學(xué)期望E(X).參考答案:【考點(diǎn)】離散型隨機(jī)變量的期望與方差;古典概型及其概率計(jì)算公式.【分析】(Ⅰ)根據(jù)相互獨(dú)立事件的概率公式求出對應(yīng)的概率值;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園安全演講稿500字(18篇)
- 外科護(hù)理工作計(jì)劃
- 銀行行長競聘演講稿范文(11篇)
- 深基坑培訓(xùn)課件
- 四年級下冊語文課文期末復(fù)習(xí)學(xué)習(xí)計(jì)劃(9篇)
- 可愛的人演講稿(5篇)
- 中學(xué)班主任工作評價(jià)(28篇)
- 新客服工作計(jì)劃范文(17篇)
- 幼兒園教育教學(xué)總結(jié)(17篇)
- 小學(xué)數(shù)學(xué)北師大版五年級下冊分?jǐn)?shù)除法(三)教案配套
- TCECS24-2020鋼結(jié)構(gòu)防火涂料應(yīng)用技術(shù)規(guī)程
- 2025春教科版(2024)小學(xué)一年級下冊科學(xué)全冊教案
- 智障個(gè)別化教育計(jì)劃案例(3篇)
- 信息時(shí)代的研究生 學(xué)習(xí)與創(chuàng)新能力培養(yǎng)
- 契稅補(bǔ)貼申請表
- 西山煤電集團(tuán)白家莊礦煤層開采初步設(shè)計(jì)
- 高速公路內(nèi)業(yè)資料規(guī)范化管理實(shí)施細(xì)則課件
- 最新金屬軟管設(shè)計(jì)制造新工藝新技術(shù)及性能測試實(shí)用手冊
- 心理咨詢記錄--個(gè)案5
- 節(jié)煤型高溫沸騰爐的結(jié)構(gòu)設(shè)計(jì)與應(yīng)用
- 三維激光掃描在影視業(yè)中的應(yīng)用
評論
0/150
提交評論