2021-2022學年湖南省永州市哈弗中學高三數(shù)學理下學期期末試卷含解析_第1頁
2021-2022學年湖南省永州市哈弗中學高三數(shù)學理下學期期末試卷含解析_第2頁
2021-2022學年湖南省永州市哈弗中學高三數(shù)學理下學期期末試卷含解析_第3頁
2021-2022學年湖南省永州市哈弗中學高三數(shù)學理下學期期末試卷含解析_第4頁
2021-2022學年湖南省永州市哈弗中學高三數(shù)學理下學期期末試卷含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年湖南省永州市哈弗中學高三數(shù)學理下學期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.若函數(shù)f(x)=x2﹣ax+lnx存在垂直于y軸的切線,則實數(shù)a的取值范圍是() A.(﹣∞,﹣2]∪[2,+∞) B. (﹣∞,﹣2)∪(2,+∞) C.[2,+∞) D.(2,+∞)參考答案:考點: 利用導數(shù)研究曲線上某點切線方程.專題: 導數(shù)的綜合應用.分析: 求出原函數(shù)的導函數(shù),由導函數(shù)等于0得到a=x+,利用基本不等式求得x+的范圍得答案.解答: 解:∵f(x)=x2﹣ax+lnx,∴f'(x)=x﹣a+,由題意可知存在實數(shù)x>0,使得f'(x)=x﹣a+=0,即a=x+成立,∴a=x+≥2(當且僅當x=,即x=1時等號取到),∴實數(shù)a的取值范圍是[2,+∞).故選:C.點評: 本題考查了利用導數(shù)研究過曲線上某點處的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導數(shù)值,是中檔題.2.命題“,”的否定為

(

)A.,

B.,C.,

D.,參考答案:C3.下列命題中,真命題是()A.存在x∈R,使得ex≤0B.“x>1”是“x>2”的充分不必要條件C.x+≥2對任意正實數(shù)x恒成立D.“p或q是假命題”“¬p為真命題”的必要不充分條件參考答案:C【考點】命題的真假判斷與應用.【分析】由指數(shù)函數(shù)的性質(zhì)判斷A;由充分必要條件的判定方法判斷B,D;利用基本不等式求最值判斷C.【解答】解:對于A,由指數(shù)函數(shù)的性質(zhì)得ex>0,故A錯誤;對于B,若x>1,不一定有x>2,反之,若x>2,必有x>1,∴“x>1”是“x>2”的必要不充分條件,故B錯誤;對于C,由基本不等式可得,若x>0,則x+≥2,故C正確;對于D,若p或q是假命題,則p,q均為假命題,則¬p為真命題,反之,¬p為真命題,則p為假命題,p或q不一定是假命題,∴“p或q是假命題”是“¬p為真命題”的充分不必要條件,故D錯誤.故選:C.【點評】本題考查命題的真假判斷與應用,考查了充分必要條件的判定方法,考查了復合命題的真假判斷,是基礎題.4.(5分)圖1是某高三學生進入高中三年來的數(shù)學考試成績的莖葉圖,圖中第1次到14次的考試成績依次記為A1,A2,…A14.圖2是統(tǒng)計莖葉圖中成績在一定范圍內(nèi)考試次數(shù)的一個算法流程圖.那么算法流程圖輸出的結果是()A.8B.9C.10D.11參考答案:C【考點】:程序框圖;莖葉圖.【專題】:圖表型;算法和程序框圖.【分析】:根據(jù)流程圖可知該算法表示統(tǒng)計14次考試成績中大于等于90的人數(shù),結合莖葉圖可得答案.解:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加14次考試成績超過90分的人數(shù);根據(jù)莖葉圖的含義可得超過90分的人數(shù)為10個,故選:C.【點評】:本題主要考查了循環(huán)結構,以及莖葉圖的認識,解題的關鍵是弄清算法流程圖的含義,屬于基礎題.5.設為數(shù)列的前項和,已知,若則A.

512

B.

16

C.

64

D.

256參考答案:D6.有5名畢業(yè)生站成一排照相,若甲乙兩人之間至多有2人,且甲乙不相鄰,則不同的站法有

()A.36種

B.12種

C.60種

D.48種參考答案:C7.已知P是拋物線上的一個動點,則點P到直線和的距離之和的最小值是()A.1

B.2

C.3

D.4參考答案:C8.函數(shù)的單調(diào)增區(qū)間是(

) (A)

(B) (C)

(D)參考答案:A9.若x,y滿足約束條件目標函數(shù)z=ax+2y僅在點(1,0)處取得最小值,則的a取值范圍是A.

B.(-4,2)

C.

D.(-4,1)

參考答案:B10.將函數(shù)y=f(x)·cosx的圖象按向量a=(,1)平移,得到函數(shù)y=2sin2x的圖象,那么函數(shù)f(x)可以是

A.cosx

B.sinx

C.2cosx

D.2sinx參考答案:答案:D二、填空題:本大題共7小題,每小題4分,共28分11.對某商店一個月內(nèi)每天的顧客人數(shù)進行統(tǒng)計,得到樣本的莖葉圖(如圖所示),則該樣本的中位數(shù)、眾數(shù)、極差分別是____,_____,_______.參考答案:46,45,5612.某校高三年級的學生共1000人,一次測驗成績的分布直方圖如圖所示,現(xiàn)要按如圖所示的4個分數(shù)段進行分層抽樣,抽取50人了解情況,則在80~90分數(shù)段應抽取人數(shù)為.參考答案:20【考點】頻率分布直方圖.【分析】根據(jù)分層抽樣知在各層抽取的比例是:,把條件代入,再由抽取人數(shù),求出在80~90分數(shù)段應抽取人數(shù).【解答】解:根據(jù)題意和分層抽樣的定義知,在80~90分數(shù)段應抽取人數(shù)為×50=20.故答案為:20.13.甲、乙、丙、丁、戊名學生進行講笑話比賽,決出了第一到第五的名次,甲、乙兩名參賽者去詢問成績,回答者對甲說:“很遺憾,你和乙都未拿到冠軍”,對乙說:“你當然不會是最差的”.從這個回答分析,人的名次排列共__________(用數(shù)字作答)種不同情況參考答案:先排乙,有種排法;再排甲,也有種排法,余下個有種排法,故人的名次排列共有種不同情況.14.已知A(1,3),B(a,1),C(﹣b,0),(a>0,b>0),若A,B,C三點共線,則+的最小值是

.參考答案:11+6

【考點】基本不等式;三點共線.【分析】由A(1,3),B(a,1),C(﹣b,0),(a>0,b>0),A,B,C三點共線,可得kAB=kAC,化為3a+2b=1.再利用“乘1法”與基本不等式的性質(zhì)即可得出.【解答】解:∵A(1,3),B(a,1),C(﹣b,0),(a>0,b>0),A,B,C三點共線,∴kAB=kAC,=,化為3a+2b=1.則+=(3a+2b)=11+≥11+3×2×=11+6,當且僅當a=b時取等號.故答案為:11+6.15.甲盒子里裝有分別標有數(shù)字1、2、4、7的4張卡片,乙盒子里裝有分別標有數(shù)字1、4的2張卡片,若從兩個盒子中各隨機地取出1張卡片,則2張卡片上的數(shù)字之和為奇數(shù)的概率是。參考答案:16.給出下列四個命題:①命題“?x∈R,x2>0”的否定是“?x∈R,x2≤0”;②函數(shù)y=f(x)的定義域為(﹣∞,﹣1)∪(1,+∞),其圖象上任一點P(x,y)滿足x2﹣y2=1,則函數(shù)y=f(x)可能是奇函數(shù);③若a,b∈[0,1],則不等式a2+b2<成立的概率是④函數(shù)y=log2(x2﹣ax+2)在[2,+∞)恒為正,則實數(shù)a的取值范圍是(﹣∞,).其中真命題的序號是.(請?zhí)钌纤姓婷}的序號)參考答案:①②④【考點】2K:命題的真假判斷與應用.【分析】①根據(jù)含有量詞的命題的否定進行判斷.②根據(jù)函數(shù)奇偶性的定義和性質(zhì)結合雙曲線的圖象進行判斷.③根據(jù)幾何概型的概率公式進行判斷.④利用不等式恒成立,利用參數(shù)分離法進行求解判斷即可.【解答】解:①命題“?x∈R,x2>0”的否定是“?x∈R,x2≤0”;故①正確,②函數(shù)y=f(x)的定義域為(﹣∞,﹣1)∪(1,+∞),其圖象上任一點P(x,y)滿足x2﹣y2=1,則函數(shù)y=f(x)可能是奇函數(shù);正確,當點P的坐標滿足y=時,函數(shù)f(x)為奇函數(shù).故②正確,③若a,b∈[0,1],則不等式成立的概率是.如圖.所以③錯誤④因為函數(shù)y=log2(x2﹣ax+2)在[2,+∞)上恒為正,所以在[2,+∞)上x2﹣ax+2>1恒成立,即:在[2,+∞)上恒成立,令,因為x≥2,所以,所以g(x)在[2,+∞)上為增函數(shù),所以:當x=2時,g(x)的最小值為g(2)=,所以.則實數(shù)a的取值范圍是(﹣∞,).故④正確,故答案為:①②④17.在平面幾何中有如下結論:若正三角形ABC的內(nèi)切圓面積為,外接圓面積為,則.推廣到空間幾何體中可以得到類似結論:若正四面體ABCD的內(nèi)切球體積為,外接球體積為,則=___________.參考答案:設正四面體的棱長為,高為,四個面的面積為,內(nèi)切球半徑為,外接球半徑為,則由,得;由相似三角形的性質(zhì),可求得,所以三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.已知函數(shù)(I)求函數(shù)的對稱中心和單調(diào)區(qū)間;(II)已知內(nèi)角A、B、C的對邊分別為a,b,3,且,若向量共線,求a、b的值.參考答案:略19.23.(本小題滿分10分)選修4-4:坐標系與參數(shù)方程在直角坐標系中以為極點,軸正半軸為極軸建立坐標系.圓,直線的極坐標方程分別為.(I)(II)參考答案:20.已知函數(shù).

(Ⅰ)求;

(Ⅱ)若,函數(shù)的圖象能否總在直線的下方?說明理由.

(Ⅲ)若函數(shù)在上是增函數(shù),是方程的一個根.求證:.參考答案:解析:(Ⅰ).

(Ⅱ)時,,令得.由于,,

∴函數(shù)的圖象不能總在直線的下方.

(Ⅲ)因函數(shù)在上是增函數(shù),∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,又由得,而,

即.21.(本小題滿分12分)已知中心在坐標原點O的橢圓C經(jīng)過點A(),且點F(,0)為其右焦點.(1)求橢圓C的方程;(2)是否存在直線l與橢圓C交于B,D兩點,滿足,且原點到直線l的距離為?若存在,求出直線l的方程;若不存在,請說明理由.

參考答案:(1)設橢圓C的方程為,則左焦點為,在直角三角形中,可求,∴,故橢圓C的方程為.(2)假設存在符合題意的直線l,其方程為,由原點到l的距離為得:.

聯(lián)立方程,得.則,,.

設,,則,解得.

當斜率不存在時,l的方程為,易求得.綜上,不存在符合條件的直線.

22.(本小題12分)某班同學在“十八大”期間進行社會實踐活動,對[25,55]歲的人群隨機抽取n人進行了一次當前投資生活方式----“房地產(chǎn)投資”的調(diào)查,得到如下統(tǒng)計和各年齡段人數(shù)頻率分布直方圖:組數(shù)分組[來源:/]房地產(chǎn)投資的人

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論