廣州順德區(qū)2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
廣州順德區(qū)2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
廣州順德區(qū)2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
廣州順德區(qū)2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
廣州順德區(qū)2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣州順德區(qū)2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,,若,,共面,則λ等于()A. B.3C. D.92.如圖,平行六面體中,為的中點(diǎn),,,,則()A. B.C. D.3.已知橢圓:的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,直線與橢圓的另一個(gè)交點(diǎn)為,若為等腰三角形,則橢圓的離心率為()A. B.C. D.4.已知函數(shù)在上可導(dǎo),且,則與的大小關(guān)系為A. B.C. D.不確定5.已知函數(shù)的定義域?yàn)椋鋵?dǎo)函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.6.設(shè),是雙曲線()的左、右焦點(diǎn),是坐標(biāo)原點(diǎn).過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.7.已知條件,條件表示焦點(diǎn)在x軸上的橢圓,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既非充分也非必要條件8.如圖,棱長為1的正方體中,為線段上的動(dòng)點(diǎn),則下列結(jié)論錯(cuò)誤的是A.B.平面平面C.的最大值為D.的最小值為9.在等比數(shù)列中,若是函數(shù)的極值點(diǎn),則的值是()A. B.C. D.10.在三棱錐中,,D為上的點(diǎn),且,則()A. B.C. D.11.運(yùn)行如圖所示程序后,輸出的結(jié)果為()A.15 B.17C.19 D.2112.設(shè)斜率為2的直線l過拋物線()的焦點(diǎn)F,且和y軸交于點(diǎn)A,若(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某廠將從64名員工中用系統(tǒng)抽樣的方法抽取4名參加2011年職工勞技大賽,將這64名員工編號(hào)為1~64,若已知8號(hào)、24號(hào)、56號(hào)在樣本中,那么樣本中最后一個(gè)員工的號(hào)碼是__________14.已知,,,若,則______.15.已知向量,若,則實(shí)數(shù)___________.16.已知正數(shù)滿足,則的最小值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二次函數(shù).(1)若時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍;(2)解關(guān)于x的不等式(其中).18.(12分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值19.(12分)已知點(diǎn)A(,0),點(diǎn)C為圓B:(B為圓心)上一動(dòng)點(diǎn),線段AC的垂直平分線與直線BC交于點(diǎn)G(1)設(shè)點(diǎn)G的軌跡為曲線T,求曲線T的方程;(2)若過點(diǎn)P(m,0)()作圓O:的一條切線l交(1)中的曲線T于M、N兩點(diǎn),求△MNO面積的最大值20.(12分)如圖,五邊形為東京奧運(yùn)會(huì)公路自行車比賽賽道平面設(shè)計(jì)圖,根據(jù)比賽需要,在賽道設(shè)計(jì)時(shí)需預(yù)留出,兩條服務(wù)通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務(wù)通道的長(2)在上述條件下,如何設(shè)計(jì)才能使折線賽道(即)的長度最大,并求最大值21.(12分)已知數(shù)列的通項(xiàng)公式為:,其中.記為數(shù)列的前項(xiàng)和(1)求,;(2)數(shù)列的通項(xiàng)公式為,求的前項(xiàng)和22.(10分)已知函數(shù)(1)當(dāng)時(shí),求曲線在點(diǎn)(0,f(0))處的切線方程;(2)若存在,使得不等式成立,求m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】由,,共面,設(shè),列方程組能求出λ的值【題目詳解】∵,,共面,∴設(shè)(實(shí)數(shù)m、n),即,∴,解得故選:C2、B【解題分析】先用向量與表示,然后用向量表示向量與,即可得解【題目詳解】解:為的中點(diǎn),故選:【題目點(diǎn)撥】本題考查了平面向量基本定理的應(yīng)用,解決本題的關(guān)鍵是熟練運(yùn)用向量的加法、減法及實(shí)數(shù)與向量的積的運(yùn)算,屬于基礎(chǔ)題3、B【解題分析】由橢圓定義可得各邊長,利用三角形相似,可得點(diǎn)坐標(biāo),再根據(jù)點(diǎn)在橢圓上,可得離心率.【題目詳解】如圖所示:因?yàn)闉榈妊切?,且,又,所以,所以,過點(diǎn)作軸,垂足為,則,由,,得,因?yàn)辄c(diǎn)在橢圓上,所以,所以,即離心率,故選:B.4、B【解題分析】由,所以.5、B【解題分析】令,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【題目詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B6、B【解題分析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點(diǎn)睛:本題主要考查雙曲線的相關(guān)知識(shí),考查了雙曲線的離心率和余弦定理的應(yīng)用,屬于中檔題7、A【解題分析】根據(jù)條件,求得a的范圍,根據(jù)充分、必要條件的定義,即可得答案.【題目詳解】因?yàn)闂l件表示焦點(diǎn)在x軸上的橢圓,所以,解得或,所以條件是條件q:或的充分不必要條件.故選:A8、C【解題分析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當(dāng)時(shí),為鈍角,∴C錯(cuò);將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點(diǎn):立體幾何中的動(dòng)態(tài)問題【思路點(diǎn)睛】立體幾何問題的求解策略是通過降維,轉(zhuǎn)化為平面幾何問題,具體方法表現(xiàn)為:

求空間角、距離,歸到三角形中求解;2.對(duì)于球的內(nèi)接外切問題,作適當(dāng)?shù)慕孛?,既要能反映出位置關(guān)系,又要反映出數(shù)量關(guān)系;求曲面上兩點(diǎn)之間的最短距離,通過化曲為直轉(zhuǎn)化為同一平面上兩點(diǎn)間的距離9、B【解題分析】根據(jù)導(dǎo)數(shù)的性質(zhì)求出函數(shù)的極值點(diǎn),再根據(jù)等比數(shù)列的性質(zhì)進(jìn)行求解即可.【題目詳解】,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,所以是函數(shù)的極值點(diǎn),因?yàn)?,且所以,故選:B10、B【解題分析】根據(jù)幾何關(guān)系以及空間向量的線性運(yùn)算即可解出【題目詳解】因?yàn)?,所以,即故選:B11、D【解題分析】根據(jù)給出的循環(huán)程序進(jìn)行求解,直到滿足,輸出.【題目詳解】,,,,,,,,,,,,所以.故選:D12、B【解題分析】根據(jù)拋物線的方程寫出焦點(diǎn)坐標(biāo),求出直線的方程、點(diǎn)的坐標(biāo),最后根據(jù)三角形面積公式進(jìn)行求解即可.【題目詳解】拋物線的焦點(diǎn)的坐標(biāo)為,所以直線的方程為:,令,解得,因此點(diǎn)的坐標(biāo)為:,因?yàn)槊娣e為4,所以有,即,,因此拋物線的方程為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、40【解題分析】結(jié)合系統(tǒng)抽樣的抽樣方法來確定最后抽取的號(hào)碼.【題目詳解】因?yàn)榉侄伍g隔為,故最后一個(gè)員工的號(hào)碼為.故答案為:14、【解題分析】根據(jù)題意,由向量坐標(biāo)表示,列出方程,求出,,即可得出結(jié)果.【題目詳解】因?yàn)?,,,若,則,解得,所以.故答案為:.【題目點(diǎn)撥】本題主要考查由向量坐標(biāo)表示求參數(shù),屬于基礎(chǔ)題型.15、2【解題分析】利用向量平行的條件直接解出.【題目詳解】因?yàn)橄蛄?,且,所以,解得?故答案為:216、8【解題分析】利用“1”代換,結(jié)合基本不等式求解.【題目詳解】因?yàn)?,,所以,?dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以當(dāng)時(shí),取得最小值8.故答案為:8.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)答案見解析【解題分析】(1)當(dāng)時(shí)將原不等式變形為,根據(jù)基本不等式計(jì)算即可;(2)將原不等式化為,求出參數(shù)a分別取值、、時(shí)的解集.【小問1詳解】不等式即為:,當(dāng)時(shí),不等式可變形為:,因?yàn)椋?dāng)且僅當(dāng)時(shí)取等號(hào),所以,所以實(shí)數(shù)a的取值范圍是;【小問2詳解】不等式,即,等價(jià)于,轉(zhuǎn)化為;當(dāng)時(shí),因?yàn)?,所以不等式的解集為;?dāng)時(shí),因?yàn)椋圆坏仁降慕饧癁?;?dāng)時(shí),因?yàn)?,所以不等式的解集為;綜上所述,當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為.18、(1)證明見解析(2)【解題分析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題意建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo)和相關(guān)的向量,然后分別求出平面與平面的一個(gè)法向量,最后求出平面與平面夾角的余弦值【小問1詳解】四邊形是正方形,可得:又平面,平面則有:平面四邊形是梯形,可得:又平面,平面則有:平面又故平面平面【小問2詳解】依題意知兩兩垂直,故以為原點(diǎn),所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系.則有:,,,可得:,,設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面與平面的夾角為,則故平面與平面夾角的余弦值為19、(1)(2)1【解題分析】(1)可由題意,點(diǎn)G在線段AC的垂直平分線上,,可利用橢圓的定義,得到點(diǎn)G的軌跡為橢圓,然后利用已知的長度關(guān)系求解出橢圓方程;(2)可通過設(shè)l的方程,利用l是圓O的切線,通過點(diǎn)到直線的距離得到一組等量關(guān)系,然后將直線與橢圓聯(lián)立方程,計(jì)算弦長,表示出△MNO面積的表達(dá)式,將上面得到的等量關(guān)系代入利用基本不等式即可求解出最值.【小問1詳解】依題意有,,即G點(diǎn)軌跡是以A,B為焦點(diǎn)的橢圓,設(shè)橢圓方程為由題意可知,,則,,所以曲線T的方程為【小問2詳解】設(shè),,設(shè)直線l的方程為,因?yàn)橹本€l與圓相切,所以,即,聯(lián)立直線l與橢圓的方程,整理得,,由韋達(dá)定理可得,,所以,又點(diǎn)O到直線l的距離為1,所以當(dāng)且僅當(dāng),即時(shí),取等號(hào),所以的面積的最大值為120、(1)服務(wù)通道的長為千米(2)時(shí),折線賽道的長度最大,最大值為千米【解題分析】(1)先在中利用正弦定理得到長度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據(jù)基本等式求解最值即可.【小問1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負(fù)值舍去)所以服務(wù)通道的長為千米【小問2詳解】在中,由余弦定理得:,即,所以因?yàn)?,所以,所以,即(?dāng)且僅當(dāng)時(shí)取等號(hào))即當(dāng)時(shí),折線賽道的長度最大,最大值為千米21、(1);;(2).【解題分析】(1)驗(yàn)證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,利用錯(cuò)位相減法可求得結(jié)果.【小問1詳解】當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;數(shù)列是以為周期的周期數(shù)列;,;【小問2詳解】由(1)得:,,,,兩式作差得:.22、(1)(2)【解題分析】(1)利用導(dǎo)數(shù)求出切線斜率,即可求出切線方程;(2)把題意轉(zhuǎn)化為:存在,使

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論