河北省廊坊市2024年高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
河北省廊坊市2024年高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
河北省廊坊市2024年高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
河北省廊坊市2024年高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
河北省廊坊市2024年高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

河北省廊坊市2024年高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.相離2.()A.-2 B.0C.2 D.33.已知,是空間中的任意兩個非零向量,則下列各式中一定成立的是()A. B.C. D.4.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()A.2 B.6C.4 D.125.若點P在曲線上運動,則點P到直線的距離的最大值為()A. B.2C. D.46.已知橢圓的離心率為,雙曲線的離心率為,則()A. B.C. D.7.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.8.設(shè)AB是橢圓()的長軸,若把AB一百等分,過每個分點作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點,則的值是()A. B.C. D.9.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學(xué)為測量彬塔高度,選取了與塔底在同一水平面內(nèi)的兩個測量基點與,現(xiàn)測得,,,在點測得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.10.已知,是雙曲線的左、右焦點,點A是的左頂點,為坐標(biāo)原點,以為直徑的圓交的一條漸近線于、兩點,以為直徑的圓與軸交于兩點,且平分,則雙曲線的離心率為()A. B.2C. D.311.等比數(shù)列的公比為,則“”是“對于任意正整數(shù)n,都有”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件12.《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上兩人與下三人等,問各得幾何?”其意思為:“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得之和與丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此為等差數(shù)列,問五人各得多少錢?”(“錢”是古代一種重量單位),這個問題中戊所得為()A.錢 B.錢C.錢 D.錢二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在平行六面體中,,若,則___________.14.某校學(xué)生在研究民間剪紙藝術(shù)時,發(fā)現(xiàn)剪紙時經(jīng)常會沿紙的某條對稱軸把紙對折,規(guī)格為的長方形紙,對折1次共可以得到,兩種規(guī)格的圖形,它們的面積之和,對折2次共可以得到,,三種規(guī)格的圖形,它們的面積之和,以此類推,則對折4次共可以得到不同規(guī)格圖形的種數(shù)為______;如果對折次,那么______.15.以下四個關(guān)于圓錐曲線的命題中:①設(shè)A、B為兩個定點,k為非零常數(shù),若,則動點P的軌跡為雙曲線;②拋物線焦點坐標(biāo)是;③過定圓C上一定點A作圓的動弦AB,O為坐標(biāo)原點,若,則動點P的軌跡為橢圓;④曲線與曲線(且)有相同的焦點其中真命題的序號為______(寫出所有真命題的序號.)16.如圖,一個小球從10m高處自由落下,每次著地后又彈回到原來高度的,若已知小球經(jīng)過的路程為,則小球落地的次數(shù)為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且是的中點.(1)求證:平面;(2)求二面角的余弦值.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)a=1時,對于任意的,,都有恒成立,則m的取值范圍.19.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求B.(2)___________,若問題中的三角形存在,試求出;若問題中的三角形不存在,請說明理由.在①,②,③這三個條件中任選一個,補充在橫線上.注:如果選擇多個條件分別解答,按第一個解答計分.20.(12分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(1)證明:(2)已知,求二面角的余弦值21.(12分)在平面直角坐標(biāo)系中,設(shè)點,直線,點P在直線l上移動,R是線段PF與y軸的交點,也是PF的中點.,(1)求動點Q的軌跡的方程E;(2)過點F作兩條互相垂直的曲線E的弦AB、CD,設(shè)AB、CD的中點分別為M,N.求直線MN過定點R的坐標(biāo)22.(10分)已知是等差數(shù)列,其n前項和為,已知(1)求數(shù)列的通項公式:(2)設(shè),求數(shù)列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】寫出兩圓的圓心和半徑,求出圓心距,發(fā)現(xiàn)與兩圓的半徑和相等,所以判斷兩圓外切【題目詳解】圓的標(biāo)準(zhǔn)方程為:,所以圓心坐標(biāo)為,半徑;圓的圓心為,半徑,圓心距,所以兩圓相外切故選:C2、C【解題分析】根據(jù)定積分公式直接計算即可求得結(jié)果【題目詳解】由故選:C3、C【解題分析】利用向量數(shù)量積的定義及運算性質(zhì)逐一分析各選項即可得答案.【題目詳解】解:對A:因為,所以,故選項A錯誤;對B:因為,故選項B錯誤;對C:因為,故選項C正確;對D:因為,故選項D錯誤故選:C.4、C【解題分析】根據(jù)題設(shè)條件求出橢圓的長半軸,再借助橢圓定義即可作答.【題目詳解】由橢圓+y2=1知,該橢圓的長半軸,A是橢圓一個焦點,設(shè)另一焦點為,而點在BC邊上,點B,C又在橢圓上,由橢圓定義得,所以的周長故選:C5、A【解題分析】由方程確定曲線的形狀,然后轉(zhuǎn)化為求圓上的點到直線距離的最大值【題目詳解】由曲線方程為知曲線關(guān)于軸成軸對稱,關(guān)于原點成中心對稱圖形,在第一象限內(nèi),方程化為,即,在第一象限內(nèi),曲線是為圓心,為半徑的圓在第一象限的圓?。ê鴺?biāo)軸上的點),實際上整個曲線就是這段圓弧及其關(guān)于坐標(biāo)軸.原點對稱的圖形加上原點,點到直線的距離為,所以所求最大值為故選:A6、D【解題分析】根據(jù)給定的方程求出離心率,的表達式,再計算判斷作答.【題目詳解】因橢圓的離心率為,則有,因雙曲線的離心率為,則有,所以.故選:D7、B【解題分析】求得傾斜角的正切值即得【題目詳解】k=tan120°=.故選:B8、D【解題分析】根據(jù)橢圓的定義,寫出,可求出的和,又根據(jù)關(guān)于縱軸成對稱分布,得到結(jié)果詳解】設(shè)橢圓右焦點為F2,由橢圓的定義知,2,,,由題意知,,,關(guān)于軸成對稱分布,又,故所求的值為故選:D9、D【解題分析】在△中有,再應(yīng)用正弦定理求,再在△中,即可求塔高.【題目詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D10、B【解題分析】由直徑所對圓周角是直角,結(jié)合雙曲線的幾何性質(zhì)和角平分線定義可解.【題目詳解】由圓的性質(zhì)可知,,,所以,因為,所以又因為平分,所以,由,得,所以,即所以故選:B11、D【解題分析】結(jié)合等比數(shù)列的單調(diào)性,根據(jù)充分必要條件的定義判斷【題目詳解】若,,則,,充分性不成立;反過來,若,,則時,必要性不成立;因此“”是“對于任意正整數(shù)n,都有”的既不充分也不必要條件.故選:D12、D【解題分析】根據(jù)題意將實際問題轉(zhuǎn)化為等差數(shù)列的問題即可解決【題目詳解】解:由題意,可設(shè)甲、乙、丙、丁、戊五人分得的錢分別為,,,,則,,,,成等差數(shù)列,設(shè)公差為,整理上面兩個算式,得:,解得,故選:二、填空題:本題共4小題,每小題5分,共20分。13、2【解題分析】題中幾何體為平行六面體,就要充分利用幾何體的特征進行轉(zhuǎn)化,,再將轉(zhuǎn)化為,以及將轉(zhuǎn)化為,,總之等式右邊為,,,從而得出,.【題目詳解】解:因為,又,所以,,則.故答案為:2.【題目點撥】要充分利用幾何體的幾何特征,以及將作為轉(zhuǎn)化的目標(biāo),從而得解.14、①.5②.【解題分析】(1)按對折列舉即可;(2)根據(jù)規(guī)律可得,再根據(jù)錯位相減法得結(jié)果.【題目詳解】(1)由對折2次共可以得到,,三種規(guī)格的圖形,所以對著三次的結(jié)果有:,共4種不同規(guī)格(單位;故對折4次可得到如下規(guī)格:,,,,,共5種不同規(guī)格;(2)由于每次對著后的圖形的面積都減小為原來的一半,故各次對著后的圖形,不論規(guī)格如何,其面積成公比為的等比數(shù)列,首項為120,第n次對折后的圖形面積為,對于第n此對折后的圖形的規(guī)格形狀種數(shù),根據(jù)(1)的過程和結(jié)論,猜想為種(證明從略),故得猜想,設(shè),則,兩式作差得:,因此,.故答案為:;.【題目點撥】方法點睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯位相減法求和;(3)對于結(jié)構(gòu),利用分組求和法;(4)對于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項相消法求和.解答題15、②④##④②【解題分析】利用雙曲線定義判斷命題①;寫出拋物線焦點判斷命題②;分析點P滿足的關(guān)系判斷命題③;按取值討論計算半焦距判斷命題④作答.【題目詳解】對于①,因雙曲線定義中要求,則命題①不正確;對于②,拋物線化為:,其焦點坐標(biāo)是,命題②正確;對于③,令定圓C的圓心為C,因,則點P是弦AB的中點,當(dāng)P與C不重合時,有,點P在以線段AC為直徑的圓上,當(dāng)P與C重合時,點P也在以線段AC為直徑的圓上,因此,動點P的軌跡是以線段AC為直徑的圓(除A點外),則命題③不正確;對于④,曲線的焦點為,當(dāng)時,橢圓中半焦距c滿足:,其焦點為,當(dāng)時,雙曲線中半焦距滿足:,其焦點為,因此曲線與曲線(且)有相同的焦點,命題④正確,所以真命題的序號為②④.故答案為:②④【題目點撥】易錯點睛:橢圓長短半軸長分別為a,b,半焦距為c滿足關(guān)系式:;雙曲線的實半軸長、虛半軸長、半焦距分別為、、滿足關(guān)系式:,在同一問題中出現(xiàn)認(rèn)真區(qū)分,不要混淆.16、4【解題分析】設(shè)小球從第(n-1)次落地到第n次落地時經(jīng)過的路程為m,則由已知可得數(shù)列是從第2項開始以首項為,公比為的等比數(shù)列,根據(jù)等比數(shù)列的通項公式求得,再設(shè)設(shè)小球第n次落地時,經(jīng)過的路程為,由等比數(shù)列的求和公式建立方程求解即可.【題目詳解】解:設(shè)小球從第(n-1)次落地到第n次落地時經(jīng)過的路程為m,則當(dāng)時,得出遞推關(guān)系,所以數(shù)列是從第2項開始以首項為,公比為的等比數(shù)列,所以,且,設(shè)小球第n次落地時,經(jīng)過的路程為,所以,所以,解得,故答案為:4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】(1)取的中點F,連接EF,,由四邊形是平行四邊形即可求解;(2)采用建系法,以為軸,為軸,垂直底面方向為軸,求出對應(yīng)點坐標(biāo),結(jié)合二面角夾角余弦公式即可求解.【小問1詳解】取的中點F,連接EF,,∵,∴,且,∴,∴四邊形是平行四邊形,∴,又平面,平面,∴平面;【小問2詳解】取AC的中點O,以O(shè)為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,,,∴,.設(shè)平面的法向量是,則,即,令,得,易知平面的一個法向量是,∴,又二面角是鈍二面角,∴二面角的余弦值為.18、(1)答案見解析;(2).【解題分析】(1)由題可得,利用導(dǎo)數(shù)與單調(diào)性關(guān)系分類討論即得;(2)由題可得,利用函數(shù)的單調(diào)性及極值求函數(shù)最值即得.【小問1詳解】由題可得的定義域為,若,恒有,當(dāng)時,,當(dāng)時,,∴在上單調(diào)遞增,在上單調(diào)遞減,若,令,得,若,恒有在上單調(diào)遞增,若,當(dāng)時,;當(dāng)時,,故在和上單調(diào)遞增,在上單調(diào)遞減,若,當(dāng)時,;當(dāng)時,,故在和上單調(diào)遞增,在上單調(diào)遞減;綜上所述,當(dāng),在上單調(diào)遞增,在上單調(diào)遞減,當(dāng),在和上單調(diào)遞增,在上單調(diào)遞減,當(dāng),在上單調(diào)遞增,當(dāng),在和上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】由(1)知,時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)a=1時,,,,∴.又,,∴.由題意得,,∴.19、(1)(2)答案見解析【解題分析】(1)由正弦定理及正弦的兩角和公式可求解;(2)選擇條件①,由正弦定理及輔助角公式可求解;選擇條件②,由余弦定理及正切三角函數(shù)可求解;選擇條件③,由余弦定理可求解【小問1詳解】由,可得,則.∴,在中,,則,∵,∴,∴,∵,∴.【小問2詳解】選擇條件①,在中,,可得,∵,∴,∴,根據(jù)輔助角公式,可得,∵,∴,即,故.選擇條件②由,得,∵,∴,因此,,整理得,即,則.在中,,∴.故.選擇條件③由,得,即,整理得,由于,則方程無解,故不存在這樣的三角形.20、(1)詳見解析(2)【解題分析】(1)利用垂直關(guān)系,轉(zhuǎn)化為證明線面垂直,即可證明線線垂直;(2)利用垂直關(guān)系,建立空間直角坐標(biāo)系,分別求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小問1詳解】如圖,取的中點,連結(jié),,,因為,所以,因為平面平面,平面平面,所以平面,且平面,所以,又因為底面時菱形,所以,又因為點分別為的中點,所以,所以,且,所以平面,又因為平面,所以;【小問2詳解】由(1)可知,平面,連結(jié),因為,,點為的中點,所以,則兩兩垂直,以點為坐標(biāo)原點,建立空間直角坐標(biāo)系,如圖所示:則,,,所以,,,,,,所以,,,設(shè)平面的法向量為,則,令,則,,故,設(shè)平面的法向量為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論