




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024學(xué)年四川省成都鹽道街中學(xué)三數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),,,則的大小關(guān)系是()A. B. C. D.2.設(shè)函數(shù),若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.3.明代數(shù)學(xué)家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.4.已知為坐標原點,角的終邊經(jīng)過點且,則()A. B. C. D.5.某中學(xué)2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該??忌纳龑W(xué)情況,統(tǒng)計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達線人數(shù)減少C.與2016年相比,2019年二本達線人數(shù)增加了0.3倍D.2016年與2019年藝體達線人數(shù)相同6.設(shè)函數(shù)定義域為全體實數(shù),令.有以下6個論斷:①是奇函數(shù)時,是奇函數(shù);②是偶函數(shù)時,是奇函數(shù);③是偶函數(shù)時,是偶函數(shù);④是奇函數(shù)時,是偶函數(shù)⑤是偶函數(shù);⑥對任意的實數(shù),.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤7.已知函數(shù)(,是常數(shù),其中且)的大致圖象如圖所示,下列關(guān)于,的表述正確的是()A., B.,C., D.,8.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.9.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③10.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.11.已知角的終邊經(jīng)過點P(),則sin()=A. B. C. D.12.己知全集為實數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等比數(shù)列的前項和為,若,,則__________.14.的展開式中的常數(shù)項為__________.15.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總?cè)藬?shù)為__________.16.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實數(shù)λ的值是__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風(fēng)后該青年志愿者與當?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.18.(12分)在平面直角坐標系中,有一個微型智能機器人(大小不計)只能沿著坐標軸的正方向或負方向行進,且每一步只能行進1個單位長度,例如:該機器人在點處時,下一步可行進到、、、這四個點中的任一位置.記該機器人從坐標原點出發(fā)、行進步后落在軸上的不同走法的種數(shù)為.(1)分別求、、的值;(2)求的表達式.19.(12分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.20.(12分)已知函數(shù).(1)若,且,求證:;(2)若時,恒有,求的最大值.21.(12分)如圖,在四棱錐中,底面,,,,為的中點,是上的點.(1)若平面,證明:平面.(2)求二面角的余弦值.22.(10分)11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.①求;②規(guī)定,經(jīng)過計算機計算可估計得,請根據(jù)①中的值分別寫出a,c關(guān)于b的表達式,并由此求出數(shù)列的通項公式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【題目詳解】因為對數(shù)函數(shù)在上單調(diào)遞增,所以,因為對數(shù)函數(shù)在上單調(diào)遞減,所以,因為指數(shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【題目點撥】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、常考題型.2、A【解題分析】
由求出范圍,結(jié)合正弦函數(shù)的圖象零點特征,建立不等量關(guān)系,即可求解.【題目詳解】當時,,∵在上有且僅有5個零點,∴,∴.故選:A.【題目點撥】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.3、C【解題分析】
根據(jù)程序框圖依次計算得到答案.【題目詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結(jié)果為,由題意,得.故選:【題目點撥】本題考查了程序框圖的計算,意在考查學(xué)生的理解能力和計算能力.4、C【解題分析】
根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【題目詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【題目點撥】本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計算能力.5、A【解題分析】
設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過簡單的計算逐一驗證選項A、B、C、D.【題目詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達線人數(shù),2016年二本達線人數(shù),增加了倍,故C錯誤;2016年藝體達線人數(shù),2019年藝體達線人數(shù),故D錯誤.故選:A.【題目點撥】本題考查柱狀圖的應(yīng)用,考查學(xué)生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.6、A【解題分析】
根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【題目詳解】當是偶函數(shù),則,所以,所以是偶函數(shù);當是奇函數(shù)時,則,所以,所以是偶函數(shù);當為非奇非偶函數(shù)時,例如:,則,,此時,故⑥錯誤;故③④正確.故選:A【題目點撥】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.7、D【解題分析】
根據(jù)指數(shù)函數(shù)的圖象和特征以及圖象的平移可得正確的選項.【題目詳解】從題設(shè)中提供的圖像可以看出,故得,故選:D.【題目點撥】本題考查圖象的平移以及指數(shù)函數(shù)的圖象和特征,本題屬于基礎(chǔ)題.8、D【解題分析】
以AB,AC分別為x軸和y軸建立坐標系,結(jié)合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數(shù)量積可得答案.【題目詳解】如圖建系,則,,,由,易得,則.故選:D【題目點撥】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.9、A【解題分析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.10、D【解題分析】
取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【題目詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最小.此時由面,可知為等腰直角三角形,,故.故選:D【題目點撥】本題考查了空間幾何體中的線面垂直、考查了學(xué)生的空間想象能力,屬于中檔題.11、A【解題分析】
由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項.12、D【解題分析】
求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補集與交集的運算得答案.【題目詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【題目點撥】本題考查了交、并、補集的混合運算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由題意,設(shè)等比數(shù)列的公比為,根據(jù)已知條件,列出方程組,求得的值,利用求和公式,即可求解.【題目詳解】由題意,設(shè)等比數(shù)列的公比為,因為,即,解得,,所以.【題目點撥】本題主要考查了等比數(shù)列的通項公式,及前n項和公式的應(yīng)用,其中解答中根據(jù)等比數(shù)列的通項公式,正確求解首項和公比是解答本題的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.14、31【解題分析】
由二項式定理及其展開式得通項公式得:因為的展開式得通項為,則的展開式中的常數(shù)項為:,得解.【題目詳解】解:,則的展開式中的常數(shù)項為:.故答案為:31.【題目點撥】本題考查二項式定理及其展開式的通項公式,求某項的導(dǎo)數(shù),考查計算能力.15、60【解題分析】
根據(jù)樣本容量及各組人數(shù)比,可求得C組中的人數(shù);由組中甲、乙二人均被抽到的概率是可求得C組的總?cè)藬?shù),即可由各組人數(shù)比求得總?cè)藬?shù).【題目詳解】三組人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數(shù)分別.設(shè)組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【題目點撥】本題考查了分層抽樣的定義與簡單應(yīng)用,古典概型概率的簡單應(yīng)用,由各層人數(shù)求總?cè)藬?shù)的應(yīng)用,屬于基礎(chǔ)題.16、【解題分析】
根據(jù)平面向量的數(shù)量積運算與單位向量的定義,列出方程解方程即可求出λ的值.【題目詳解】解:由題意,設(shè)(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.【題目點撥】本題考查了單位向量和平面向量數(shù)量積的運算問題,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3360元;(2)見解析【解題分析】
(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)根據(jù)頻率分布直方圖計算隨機變量X的可能取值,再求X的分布列和數(shù)學(xué)期望值.【題目詳解】(1)記每個農(nóng)戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農(nóng)戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農(nóng)戶共有0.00003×2000×50=3(戶),隨機抽取2戶,則X的可能取值為0,1,2;計算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數(shù)學(xué)期望為E(X)=0×+1×+2×=.【題目點撥】本題考查了頻率分布直方圖與離散型隨機變量的分布列與數(shù)學(xué)期望計算問題,屬于中檔題.18、(1),,,(2)【解題分析】
(1)根據(jù)機器人的進行規(guī)律可確定、、的值;(2)首先根據(jù)機器人行進規(guī)則知機器人沿軸行進步,必須沿軸負方向行進相同的步數(shù),而余下的每一步行進方向都有兩個選擇(向上或向下),由此結(jié)合組合知識確定機器人的每一種走法關(guān)于的表達式,并得到的表達式,然后結(jié)合二項式定理及展開式的通項公式進行求解.【題目詳解】解:(1),,(2)設(shè)為沿軸正方向走的步數(shù)(每一步長度為1),則反方向也需要走步才能回到軸上,所以,1,2,……,,(其中為不超過的最大整數(shù))總共走步,首先任選步沿軸正方向走,再在剩下的步中選步沿軸負方向走,最后剩下的每一步都有兩種選擇(向上或向下),即等價于求中含項的系數(shù),為其中含項的系數(shù)為故.【題目點撥】本題考查組合數(shù)、二項式定理,考查學(xué)生的邏輯推理能力,推理論證能力以及分類討論的思想.19、(Ⅰ)見解析(Ⅱ)【解題分析】
(Ⅰ)連接交于點,連接,由于平面,得出,根據(jù)線線位置關(guān)系得出,利用線面垂直的判定和性質(zhì)得出,結(jié)合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據(jù)題意,建立空間直角坐標系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【題目詳解】解:(Ⅰ)證明:連接交于點,連接,則平面平面,平面,,為的中點,為的中點,平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標系,設(shè)則,,,,,設(shè)平面的法向量為,則,取得,設(shè)直線與平面所成角為,直線與平面所成角的余弦值為.【題目點撥】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.20、(1)見解析;(2).【解題分析】
(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并設(shè),則,,將不等式等價轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,通過推導(dǎo)出來證得結(jié)論;(2)構(gòu)造函數(shù),對實數(shù)分、、,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,可得出的最大值.【題目詳解】(1),,所以,函數(shù)單調(diào)遞增,所以,當時,,此時,函數(shù)單調(diào)遞減;當時,,此時,函數(shù)單調(diào)遞增.要證,即證.不妨設(shè),則,,下證,即證,構(gòu)造函數(shù),,所以,函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,,且函數(shù)在區(qū)間上單調(diào)遞增,所以,即,故結(jié)論成立;(2)由恒成立,得恒成立,令,則.①當時,對任意的,,函數(shù)在上單調(diào)遞增,當時,,不符合題意;②當時,;③當時,令,得,此時,函數(shù)單調(diào)遞增;令,得,此時,函數(shù)單調(diào)遞減...令,設(shè),則.當時,,此時函數(shù)單調(diào)遞增;當時,,此時函數(shù)單調(diào)遞減.所以,函數(shù)在處取得最大值,即.因此,的最大值為.【題目點撥】本題考查利用導(dǎo)數(shù)證明不等式,同時也考查了利用導(dǎo)數(shù)求代數(shù)式的最值,構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力,屬于難題.21、(1)證明見解析(2)【解題分析】
(1)因為,利用線面平行的判定定理可證出平面,利用點線面的位置關(guān)系,得出和,由于底面,利用線面垂直的性質(zhì),得出,且,最后結(jié)合線面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標系,標出點坐標,運用空間向量坐標運算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【題目詳解】(1)證明:因為,平面,平面,所以平面,因為平面,平面,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一年級下學(xué)期體育教學(xué)計劃
- 廠家招商加盟合同范例
- 《黃帝內(nèi)經(jīng)》讀書心得體會
- 廠家飯盒供貨合同范本
- 卡丁車購銷合同范本
- 冷庫空調(diào)保養(yǎng)合同范例
- 農(nóng)村建房木工合同范本
- 參加比賽用車合同范本
- app系統(tǒng)使用合同范本
- 出口貨物提供合同范本
- 2024年山東淄博市城市資產(chǎn)運營有限公司招聘筆試參考題庫含答案解析
- 酒店公共區(qū)域電梯安全使用培訓(xùn)
- 急性冠脈綜合征ACS課件
- 三角函數(shù)的誘導(dǎo)公式(一)完整版
- 零信任安全模型研究
- 中小學(xué)幼兒園安全風(fēng)險防控工作規(guī)范
- 正確認識民族與宗教的關(guān)系堅持教育與宗教相分離
- 畜禽廢棄物資源化利用講稿課件
- 土地糾紛調(diào)解簡單協(xié)議書
- 服裝倉庫管理制度及流程
- 架子工安全教育培訓(xùn)試題(附答案)
評論
0/150
提交評論