




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
商務(wù)智能解決的方案議程數(shù)據(jù)倉庫解決方案概述數(shù)據(jù)倉庫設(shè)計工具數(shù)據(jù)倉庫引擎SybaseAdaptiveServerIQMultiplex“數(shù)據(jù)倉庫是在企業(yè)管理和決策中面向主題的,集成的,與時間相關(guān)的和不可修改的數(shù)據(jù)集合”BillInmon數(shù)據(jù)倉庫定義OLTP系統(tǒng)5-10年過去詳細數(shù)據(jù)當(dāng)前詳細數(shù)據(jù)輕度匯總數(shù)據(jù)高度匯總數(shù)據(jù)數(shù)據(jù)集市用戶分析網(wǎng)絡(luò)資源分析數(shù)據(jù)倉庫數(shù)據(jù)倉庫/決策分析系統(tǒng)數(shù)據(jù)倉庫是完全不同的數(shù)據(jù)庫系統(tǒng)RDBMSSybaseSAP/ERPVSAMEXCEL操作(業(yè)務(wù))系統(tǒng)特性事務(wù)處理性能是第一位的支持日常的業(yè)務(wù)事務(wù)驅(qū)動面向應(yīng)用數(shù)據(jù)是當(dāng)前的并在不斷變化存儲詳細數(shù)據(jù)(每一個事件或事務(wù))針對快速預(yù)定義的事務(wù)優(yōu)化設(shè)計可預(yù)見的使用模式支持辦事人員或行政人員數(shù)據(jù)倉庫應(yīng)用系統(tǒng)特點支持長遠的業(yè)務(wù)戰(zhàn)略決策分析驅(qū)動面向主題數(shù)據(jù)是歷史的數(shù)據(jù)反映某個時間點或一段時間數(shù)據(jù)是靜態(tài)的,除數(shù)據(jù)刷新外數(shù)據(jù)是匯總的優(yōu)化是針對查詢而不是更新支持管理人員和執(zhí)行主管人員數(shù)據(jù)倉庫解決方案解決從數(shù)據(jù)庫中獲取信息的問題。INFORMATION信息信息INFORMATION什么是數(shù)據(jù)倉庫解決方案?應(yīng)用價值時間1.日常報表2.即席查詢3.分析4.數(shù)據(jù)挖掘?qū)n}應(yīng)用1234數(shù)據(jù)倉庫應(yīng)用類型數(shù)據(jù)倉庫應(yīng)用數(shù)據(jù)倉庫系統(tǒng)體系架構(gòu)RelationalPackageLegacyExternalsourceDataCleanToolSourceDataDataStagingWareHouseAdmin.ToolsEnterpriseDataWarehouseDataExtraction,TransformationandloadDatamartDatamartEnterprise/CentralDataWarehouseRDBMSROLAPRDBMS
DimensionModelingConformeddimension&factIncludingatomic&aggregateArchitectedDatamartsCentralMetadataDataModelingToolEnd-UserToolEnd-UserToolMDBEnd-UserToolEnd-UserToolLocalMetadataLocalMetadata數(shù)據(jù)倉庫/商務(wù)智能應(yīng)用成功的關(guān)鍵?做什么,怎么做??數(shù)據(jù)倉庫性能Sybase&Partner專業(yè)服務(wù)數(shù)據(jù)倉庫顧問咨詢IndustryWarehouseStudioSybaseIWS方法學(xué)ERDesignToolImpactAnalysisMetadataManagementSybaseIndustryWarehouseStudio
打包的數(shù)據(jù)倉庫基礎(chǔ)平臺概述業(yè)務(wù)模型物理模式元數(shù)據(jù)ETL工具例子報表算法ETLToolMetadataExchangeSmartETLMaps(Future)SQLTemplatesCognosBusinessObjectsMicroStrategyBusinessModelsfocusedonKeyIndustryEventsEnterprise-wide,StarSchema-baseddesignIWS產(chǎn)品介紹
TABLETABLETABLETABLETABLEIndustry-specificDataModelsDataWarehouse“OpenRDBMS*”O(jiān)RACLE,IBM,MICROSOFT,NCR,SYBASE,etc.
BIPartnersSampleApplications
AnalyticalCRMSalesAnalysisCustomerProfilingCampaignAnalysisCustomerCareAnalysisLoyaltyAnalysisBusinessPerformanceAnalysisIndustrySpecificSampleDataGeneral-RepresentativeSystemsIntegratorsGuideProjectPlansImplementationProtocole.g.InformaticaETLToolWarehouseArchitectMulti-DimensionalDesignToolSQLSleReportsWarehouseControlCenterMetaDataManagement客戶構(gòu)成分析營銷活動分析客戶興趣分析忠誠度分析銷售分析行業(yè)相關(guān)的經(jīng)營業(yè)績分析收益率分析EVT_TYP_ID=EVT_TYP_IDPRD_ID=PRD_IDENTY_ID=ENTY_IDENTY_ID=EMP_IDGEO_ID=GEO_IDLANGUAGE_ID=LANGUAGE_IDPRODUCT_ID=PRODUCT_IDDEMO_ID=DEMO_IDENTY_ID=V_E_ENTY_IDENTY_ID=ENTY_IDENTY_ID=F_C_ENTY_IDCOR_EVT_TYP_ID=COR_EVT_TYP_IDCOR_RPT_STRC_ID=COR_RPT_STRC_IDENTY_ID=CNTC_RSOL_EMP_IDGEO_ID=GEO_IDFNCL_SCOR_ID=FNCL_SCOR_IDMEASURE_UNIT_ID=MEASURE_UNIT_IDCOR_EVT_TXN_ID=COR_EVT_TXN_IDLANGUAGE_ID=LANGUAGE_IDCOR_EVT_TXN_SEQ_NB=COR_EVT_TXN_SEQ_NBPN_BHVR_SCOR_ID=PN_BHVR_SCOR_IDPRODUCT_ID=PRODUCT_IDDEMO_ID=DEMO_IDENTY_ID=ENTY_IDFNCL_SCOR_ID=FNCL_SCOR_IDMEASURE_UNIT_ID=MEASURE_UNIT_IDDEMO_ID=DEMO_IDPRODUCT_ID=PRODUCT_IDPN_BHVR_SCOR_ID=PN_BHVR_SCOR_IDLANGUAGE_ID=LANGUAGE_IDFNCL_SCORES_ID=FNCL_SCOR_IDMEASURE_UNIT_ID=D_M_MEASURE_UNIT_IDMEASURE_UNIT_ID=MEASURE_UNIT_IDGEO_ID=GEO_IDCOR_RPT_STRC_ID=COR_RPT_STRC_IDEVT_TYP_ID=COR_EVT_TYP_IDENTY_ID=F_C_ENTY_IDGEO_ID=GEO_IDLANGUAGE_ID=LANGUAGE_IDEVT_TYP_ID=EVT_TYP_IDDV_HR_EVT_TYPEEVT_TXN_ID<pk,fk>INTEGEREVT_TYP_ID<fk>INTEGEREVT_TYP_SHRT_NMCHAREVT_TYP_FULL_NMcharEVT_TYP_CAT_SHRT_NCHAREVT_TYP_CAT_FULL_NcharF_HR_EVTV_E_ENTY_ID<fk>INTEGERV_E2_ENTY_ID<fk>INTEGEREVT_DT_PRD_IDINTEGERADMIN<pk,fk>INTEGEREVT_EMP_ID<pk,fk>INTEGEREVT_EMP_DEMO<pk,fk>INTEGEREVT_ADMIN_DEMO<pk,fk>INTEGERCORE_EXT_ID<pk,fk>INTEGERCORE_RPTG_STRUC<pk,fk>INTEGERGEO_ID<pk,fk>INTEGERMU_ID<pk>INTEGERFIN_SCORE_ID<pk,fk>INTEGERLANGUAGE_ID<pk,fk>INTEGERPB_SCORE_ID<pk>INTEGERF_C_ENTY_ID<fk>INTEGERPRODUCT_ID<pk>INTEGERDEMO_ID<pk,fk>INTEGEREMP_ID<pk,fk>INTEGERCDEX_SEQ_NO<pk>INTEGERQTYintegerF_CORE_EVTCOR_EVT_TXN_ID<pk>INTEGERCOR_EVT_TYP_ID<pk,fk>INTEGERD_M_MEASURE_UNIT_ID<fk>INTEGERCOR_RPT_STRC_ID<pk,fk>INTEGERGEO_ID<pk,fk>INTEGERMEASURE_UNIT_ID<pk,fk>INTEGERFNCL_SCOR_ID<pk,fk>INTEGERLANGUAGE_ID<pk,fk>INTEGERPN_BHVR_SCOR_ID<pk,fk>INTEGERPRODUCT_ID<pk,fk>INTEGERDEMO_ID<pk,fk>INTEGERENTY_ID<pk,fk>INTEGERV_E_ENTY_ID<fk>INTEGERCOR_EVT_TXN_SEQ_NB<pk>NUMBERPRD_ID<fk>INTEGERAMOUNTNUMBERD_CORE_EVT_TYPEVT_TYP_ID<pk>INTEGEREVT_TYP_SHRT_NAMVARCHAR(15)EVT_TYP_LONG_NAMVARCHAR(35)EVT_TYP_SUBTYP_NAMVARCHAR(15)D_CORE_RPT_STRCCOR_RPT_STRC_ID<pk>INTEGERHOLDING_COMPANYVARCHAR(35)ORG_TYPEVARCHAR(20)ORG_NAMEVARCHAR(35)REGIONVARCHAR(20)SALES_TEAM_TYPEVARCHAR(15)SALES_TEAMVARCHAR(15)SALES_PERSON_NAMEcharSALES_PERSON_GRADECHARSALES_PERSON_TYPECHARCHNL_CATEGORY1char(18)CHNL_TYPECHARCHNL_SUBCATCHARCHNL_NAMEcharCHNL_CEASED_TRD_DTDATECHNL_ENTY_IDINTEGERCHNL_CITYVARCHAR(20)CHNL_POSTCODEVARCHAR(20)BEGIN_DATE_PRD_IDINTEGEREND_DATE_PRD_IDINTEGERD_GEOGRAPHYGEO_ID<pk>INTEGERALL_ENTRIESCHARPOSTAL_CODECHARVARYING(15)CITYcharPOSTAL_CD_PFXchar(3)HZRD_WTHR_AREACHARHZD_WTHR_TYPECHARDMA_CODECHARSMSA_CODECHARST_PROV_AREACHARTV_REGIONCHARNTL_RADIO_AREACHARLCL_RADIO_AREACHARREGIONCHARCOUNTRYchar(3)CONTINENTY_ABBRchar(3)GEO_SUB_CNTNT_ABBRchar(3)SMRY_EFF_DTINTEGERSMRY_END_DTINTEGERPRISN_ADRS_INDCHARD_MSR_UNITMEASURE_UNIT_ID<pk>INTEGERSHRT_DESCchar(6)LONG_DESCchar(20)D_DEMOGRAPHICSDEMO_ID<pk>INTEGERALL_ENTRIESCHARINCOME_BANDVARCHAR(50)AGE_BANDVARCHAR(50)GNDRCHARMRTL_STATCHARHIGH_VALUE_INDICATCHARACMDTN_CTGRYCHARNBR_IN_HH_BANDVARCHAR(50)CHLD_AT_HOME_BANDVARCHAR(50)SIZE_CLSCHARLEGAL_ORG_TYPECHARNBR_EMP_BANDVARCHAR(50)SECTOR_CLSCHARMAIL_PRMSN_INDCHARTELMKT_PRMSN_INDCHARD_FNCL_SCORFNCL_SCORES_ID<pk>INTEGERINTERNAL_FNCL_SCORVARCHAR(50)EXPERIAN_SCOR_BANDVARCHAR(50)SCOR_N_BANDVARCHAR(50)PRFT_IND_BANDVARCHAR(50)DEBT_INCOME_RATIONUMBERD_LANGUAGELANGUAGE_ID<pk>INTEGERISO_LANG_CODECHARISO_LANG_NAMEcharLANG_GROUPVARCHAR(20)D_PN_BHVR_SCORPN_BHVR_SCOR_ID<pk>INTEGERSCORE1_BANDVARCHAR(20)SCORE_N_BANDVARCHAR(20)D_PRODUCTPRODUCT_ID<pk,fk>INTEGERENTY_ID<fk>INTEGERPRODUCT_LINECHARPRODUCT_GROUPCHARPRODUCT_CODECHARPRODUCT_NAMECHARPD_VARIANT_CODECHARPRODUCT_VARIANTVARCHAR(35)GRP_INDV_INDCHARPD_START_PRD_IDINTEGERPD_END_PRD_IDINTEGERF_SALES_EVENTEVT_TXN_ID<fk>INTEGEREVT_TYP_ID<fk>INTEGERRPT_STRC_ID<fk>INTEGERMEASURE_UNIT_ID<fk>INTEGERFNCL_SCOR_ID<fk>INTEGERPN_BHVR_SCOR_ID<fk>INTEGERENTY_ID<fk>INTEGEREMP_ID<fk>INTEGEREVT_TXN_SEQ_NBR<fk>INTEGERF_CUS_CNTC_EVTV_E_ENTY_ID<fk>INTEGERCUS_CNTC_ID<pk>INTEGERD_C_CTCT_RSOL_ID<fk>INTEGERLGCY_SYS_CUS_CNTCINTEGERCUS_CNTC_REFcharCUS_CNTC_EVT_IDINTEGERF_C_ENTY_ID<fk>INTEGERCUS_STSF_RT_ID<fk>INTEGERCNTC_INIT_DT_IDINTEGERHOUR_ID<fk>INTEGERMINUTE_ID<fk>INTEGERINIT_CNTC_EMP<fk>charCOR_EVT_TXN_ID<fk>INTEGERCOR_EVT_TYP_ID<fk>INTEGERCOR_RPT_STRC_ID<fk>INTEGERGEO_ID<fk>INTEGERMEASURE_UNIT_ID<fk>INTEGERFNCL_SCOR_ID<fk>INTEGERLANGUAGE_ID<fk>INTEGERPN_BHVR_SCOR_ID<fk>INTEGERPRODUCT_ID<fk>INTEGERDEMO_ID<fk>INTEGERCNTC_RSOL_EMP_ID<fk>INTEGERCUS_ID<fk>INTEGERSRSNS_CUS_CO_ID<fk>INTEGERDV_EMPENTY_ID<pk,fk>INTEGERRPT_STRC_IDINTEGERGEO_IDINTEGERADR_IDINTEGEREMP_DEMO_IDINTEGEREMP_NAME_PFXCHAREMP_SNAMEVARCHAR(15)EMP_FNAMEVARCHAR(15)EMP_MNAMEVARCHAR(15)EMP_NAME_SFXCHAREMP_NTL_INS_NBRCHAREMP_HOME_TEL_NBRCHAREMP_PRIM_FAX_NBRCHAREMP_EMAIL_IDINTEGEREMP_DOBDATEEMP_GNDRCHAREMP_MRTL_STATCHAREMP_LIFE_STATCHAREMP_PREF_LANGVARCHAR(20)F_CPGN_CNTC_EVTCCE_ID<pk>INTEGERPROMO_EPSD_ID<pk>INTEGERENTY_ID<pk,fk>INTEGERCNTC_PRD_ID<pk>integerCCH_COUNT<pk>INTEGERCORE__EVT_TYPE_ID<fk>INTEGERCOR_RPTG_STRUCT_ID<fk>INTEGERGEO_ID<fk>INTEGERMU_ID<fk>INTEGERFINANCIAL_SCORE_ID<fk>INTEGERLANGUAGE_ID<fk>INTEGERPB_SCORE_ID<fk>INTEGERPRODUCT_ID<fk>INTEGERDEMO_ID<fk>INTEGEREMP_ID<fk>INTEGERCOR_EVT_TX_SEQ_NO<fk>SMALLINTTRGT_GRPchar(3)CORE_EVENTY_TYPE_IDINTEGERCNTCT_CNTRL_GRP_INCHARCCE_RESULTCHARP_PSYCH_IDINTEGERAFFILIATION_IDintPA_IDINTEGERCC_COMM_EVT_AMTdecimal(10,2)D_TIME_PERIODPRD_ID<pk>INTEGERDT_NAchar(4)DATEDATEDAY_NAMEchar(8)DAY_ABRchar(3)DAY_IN_WEEKSMALLINTDAY_IN_MONTHSMALLINTDAY_IN_YEARSMALLINTWEEK_IN_MONTHSMALLINTWEEK_IN_YEARSMALLINTCLNT_SVC_WK_IN_YRchar(18)MONTH_NAMEchar(10)MONTH_ABRchar(3)MONTH_IN_YEARSMALLINTCALENDAR_QTRchar(6)MONTH_IN_QTRSMALLINTWEEK_IN_QTRSMALLINTDAY_IN_QTRSMALLINTFINANCIAL_QTRchar(6)COMPETITOR_FSCL_YRchar(6)MONTH_IN_FNCL_QTRSMALLINTWEEK_IN_FNCL_QTRSMALLINTDAY_IN_FNCL_QTRSMALLINTSEMI_YEARLYSMALLINTYEAR_NAMEchar(18)YEAR_ABRchar(4)SEASON_NAMEchar(18)SEASON_ABRchar(6)NBR_DAYS_SINCE_90integerHOLIDAY_INDCHARXMAS_HLDY_INDCHAREASTER_HLDY_INDCHARD_CPGN_COM_EVT_TYPEVT_TYP_ID<pk,fk>INTEGERCPGN_COMM_DESCCHAR分析型CRM經(jīng)營業(yè)績管理SybaseIndustryWarehouseStudio
分析型應(yīng)用框架Time資源搜集需求理解業(yè)務(wù)線設(shè)計模式ETL模板構(gòu)造分析需求實施測試用戶反饋精練測試第二代倉庫典型的數(shù)據(jù)倉庫項目從這里開始SybaseIWS提供的時間上的價值
快速啟動數(shù)據(jù)倉庫項目搜集需求理解業(yè)務(wù)線設(shè)計模式ETL模板構(gòu)造分析查詢實施測試第一代倉庫SybaseIWS從這里開始IWS節(jié)省3到6個月更多的價值=更快地訪問信息SybaseIndustryWarehouseStudio
ValueProposition回顧
預(yù)先建立的業(yè)務(wù)和物理模型優(yōu)化了項目進度的安排和加快了對數(shù)據(jù)的訪問基于經(jīng)過驗證的實施經(jīng)驗和行業(yè)經(jīng)驗設(shè)計和方法論是可擴展/可定制的安全企業(yè)范圍數(shù)據(jù)庫獨立面向行業(yè)集成的模型和基礎(chǔ)平臺
靈巧節(jié)省資源…一半的投入節(jié)省時間…更快的實施節(jié)省資金…降低成本節(jié)省數(shù)據(jù)倉庫系統(tǒng)體系架構(gòu)RelationalPackageLegacyExternalsourceDataCleanToolSourceDataDataStagingWareHouseAdmin.ToolsEnterpriseDataWarehouseDataExtraction,TransformationandloadDatamartDatamartEnterprise/CentralDataWarehouseRDBMSROLAPRDBMS
DimensionModelingConformeddimension&factIncludingatomic&aggregateArchitectedDatamartsCentralMetadataDataModelingToolEnd-UserToolEnd-UserToolMDBEnd-UserToolEnd-UserToolLocalMetadataLocalMetadataAdaptiveServer?IQMultiplex?是專門為滿足數(shù)據(jù)倉庫和商務(wù)智能設(shè)計的高性能的關(guān)系數(shù)據(jù)庫系統(tǒng)。IQMultiplex的主要特點是:?高可擴展性–支持?jǐn)?shù)以千計的并發(fā)用戶存取TB級的數(shù)據(jù)。?突破性的速度–閃電般的查詢速度,比傳統(tǒng)RDBMS快10~100倍以上。?無限的靈活性–支持任意類型的即席查詢。?最低的擁有總成本–高效的數(shù)據(jù)壓縮存儲,達到30%~60%;簡單的維護和管理。集成的主要產(chǎn)品DesignWarehouseArchitectManageSybaseASIQMIntegrateInformaticaEnterpriseConnectReplicationServerPowerMartVisualizeBo、BrioCognosSPSSAdministerWarehouseControlCenterWarehouseControlCentreSybase數(shù)據(jù)倉庫相關(guān)產(chǎn)品集的構(gòu)成RelationalPackageLegacyExternalsourceDataCleanToolSourceDataDataStagingWareHouseAdmin.ToolsEnterpriseDataWarehouseDataExtraction,TransformationandloadDatamartDatamartEnterprise/CentralDataWarehouseRDBMSROLAPRDBMSRDBMS,StarSchemaArchitectedDatamartsCentralMetadataDataModelingToolEnd-UserToolEnd-UserToolMDBEnd-UserToolEnd-UserToolLocalMetadataLocalMetadataPowerCenterPowerMartSybaseIQMSybaseIQMBrio/BOPowerMartWarehouseArchitectWCCCognos設(shè)計:成功的關(guān)鍵數(shù)據(jù)庫的設(shè)計對數(shù)據(jù)倉庫系統(tǒng)的整體性能、裝載和建立索引的時間以及數(shù)據(jù)量的增長等的影響超過任何其它方面。數(shù)據(jù)倉庫設(shè)計在支持分析和決策的查詢環(huán)境中,使業(yè)務(wù)用戶可以訪問,理解和利用數(shù)據(jù)以業(yè)務(wù)用戶理解和運用信息的方式組織數(shù)據(jù)可預(yù)見的查詢方式基于時間的匯總的數(shù)據(jù)向下/上的鉆?。―rill-down/drill-up)多維模型設(shè)計傳統(tǒng)的數(shù)據(jù)建模方法(如ER模型)可能非常復(fù)雜且不易理解按照最終用戶的想法定義信息(以查詢?yōu)橹行慕?Star(星型),Snowflake(雪花型),Constellation(星座型),Snowstorm(雪暴型)Facts(事實):可度量數(shù)據(jù),如數(shù)量、價格Dimensions(維):用于分類Fact的詳細數(shù)據(jù)GroceryTransactionStoreNumberTransactionDateCustomerProductQuantityAmountCustomerCustomerFromDateToDateFirstNameLastNameAddress1Address2Address3CityStateCountryPostalCodeTimeTransactionDateStoreStoreNumberStoreNameCityStateCountryTelephoneProductProductDescriptionCategoryFactTableDimensionTablesDimensionTables多維模型:星型模式GroceryTransactionStoreNumberTransactionDateCustomerProductQuantityAmountCustomerCustomerFirstNameLastNameAddress1Address2Address3CityStateCountryPostalCodeCustomerCategoryTimeTransactionDateStoreStoreNumberStoreNameCityStateCountryTelephoneRegionProductProductDescriptionCategoryProductCategoryProductCategoryDescriptionRegionRegionDescriptionSalesPeriodPeriodIdentifierSalesPeriodFromDateToDateCustomerCategoryCategoryCustomerCategory為了避免數(shù)據(jù)冗余,用多張表來描述一個復(fù)雜維在星型模式的基礎(chǔ)上,構(gòu)造維表的多層結(jié)構(gòu)多維模型:雪花模式GroceryTransactionStoreNumberTransactionDateCustomerProductPurchaseQuantityAmountCustomerCustomerFirstNameLastNameAddress1Address2Address3CityStateCountryPostalCodeCustomerCategoryTimeTransactionDateStoreStoreNumberStoreNameCityStateCountryTelephoneRegionProductProductDescriptionCategoryProductLineSalesPeriodPeriodIdentifierSalesPeriodFromDateToDateCustomerCategoryCategoryCustomerCategoryProductPurchasesProductPurchaseDateSupplyingVendorPurchaseOrderUnitQuantityPurchaseCostVendorVendorVendorNameAddress1Address2Address3CityStateCountryPostalCodeProductInventoryProductWarehouseLocationQuantityOnHandQuantityBackOrderedWarehouseWarehouseAddress1Address2Address3CityStateCountryPostalCode具有多個事實表多維模型:星座模式GroceryTransactionStoreNumberTransactionDateCustomerProductPurchaseQuantityAmountCustomerCustomerFirstNameLastNameAddress1Address2Address3CityStateCountryPostalCodeCustomerCategoryTimeTransactionDateStoreStoreNumberStoreNameCityStateCountryTelephoneRegionProductProductDescriptionCategoryProductLineProductCategoryProductCategoryDescriptionRegionRegionDescriptionSalesPeriodPeriodIdentifierSalesPeriodFromDateToDateCustomerCategoryCategoryCustomerCategoryPromotionPeriodPromotionIdPromotionFromDateToDateProductLineProductLineIDDescriptionProductPurchasesProductPurchaseDateSupplyingVendorPurchaseOrderUnitQuantityPurchaseCostVendorVendorVendorNameAddress1Address2Address3CityStateCountryPostalCodeProductInventoryProductWarehouseLocationQuantityOnHandQuantityBackOrderedWarehouseWarehouseAddress1Address2Address3CityStateCountryPostalCode具有多個事實表與多層維表多維模型:雪暴模式數(shù)據(jù)模型中的事實和維度事實和維的概念對應(yīng)于:數(shù)據(jù)倉庫數(shù)據(jù)庫中的數(shù)據(jù)模型對象星型模式(Starschema)DSS/OLAP系統(tǒng)中的數(shù)據(jù)模型對象多維模型(Multidimensionalmodel)SalesfactSalesmeasuresTimedimensionAttributesofthe
timedimension星型模式-StarSchemaSalesCubeSalesmeasures(Metrics)TimedimensionAttributesofthe
timedimension多維模型-MultidimensionalModel數(shù)據(jù)倉庫設(shè)計工具WarehouseArchitect為數(shù)據(jù)倉庫的設(shè)計提供三大功能:多維建模度量、維、屬性事實表,維表維層次表,事實層次表設(shè)計向?qū)Ь酆希ˋggregationWizard)分片(PartitioningWizard)逆向工程數(shù)據(jù)源優(yōu)化代碼生成目標(biāo)數(shù)據(jù)倉庫引擎(IQM,RDBMS)OLAP分析環(huán)境Timeidentifier=TimeidentifierProductidentifier=ProductidentifierCustomeridentifier=CustomeridentifierStoreidentifier=StoreidentifierCustomerCustomeridentifier<pk>doubleCustomernamechar(30)SalesFactProductidentifier<pk,fk>doubleTimeidentifier<pk,fk>doubleCustomeridentifier<pk,fk>doubleStoreidentifier<pk,fk>doubleSalestotalrealProfitsrealStoreStoreidentifier<pk>doubleStorenamechar(50)TimeTimeidentifier<pk>doubleDatetimestampMonthchar(50)QuarterdoubleYeardoubleProductProductidentifier<pk>doubleProductdescriptionchar(80)WarehouseArchitectWarehouseArchitectDataWarehouseorDataMartDatabaseOperationalSourceOLAPEngineInterfaceExternalObjectsDecisionSupport/OLAPModel
(WAMultidimensionalHierarchy)DimensionalAnalysisTransformationRelationaland/orDimensionalAnalysisDataWarehouseModel(WAM)WarehouseArchitect的支持范圍數(shù)據(jù)倉庫設(shè)計-小結(jié)WarehouseArchitect對數(shù)據(jù)倉庫設(shè)計過程的每一步都提供支持:數(shù)據(jù)源中的元數(shù)據(jù)導(dǎo)入。設(shè)計和優(yōu)化數(shù)據(jù)倉庫的數(shù)據(jù)模型(星型模式/多維模型)。與抽取、轉(zhuǎn)換工具對接,實施數(shù)據(jù)移動?;跀?shù)據(jù)倉庫模型,為前端DSS/OLAP工具生成所需的數(shù)據(jù)立方體。為設(shè)計過程的每一步生成文檔和報告。數(shù)據(jù)存儲、管理挑戰(zhàn)數(shù)據(jù)規(guī)模查詢性能裝載速度易于管理存取訪問成功的關(guān)鍵快速,高效數(shù)據(jù)存儲技術(shù)出色的查詢性能-特殊的索引技術(shù),并行查詢可伸縮性-GB到TB級易于管理-方便,靈活,GUI存取訪問-數(shù)據(jù)隨時可用數(shù)據(jù)管理解決的方案通用的關(guān)系數(shù)據(jù)庫系統(tǒng)專門的數(shù)據(jù)倉庫服務(wù)器SybaseIQM專門為數(shù)據(jù)倉庫/數(shù)據(jù)集市設(shè)計的關(guān)系型數(shù)據(jù)庫專門針對OLAP/DSS而優(yōu)化的索引和查詢處理技術(shù)AdaptiveServerIQM數(shù)據(jù)存儲:AdaptiveServerIQM垂直存儲技術(shù)(VerticalPartitioning)無處不索引(IndexEVERYWHERE)專利的BitWise索引技術(shù)跨越Bitmap的限制多種索引類型:FP,LF,HNG,HG,CMP,WD低級數(shù)的限制從100擴充到1000數(shù)據(jù)壓縮(通常達到原始數(shù)據(jù)的70-75%)預(yù)連接的索引提供額外的顯著提高性能手段(JoinIndex)支持任意設(shè)計模式星型、雪花、雪暴、星座模式普通關(guān)系模式支持任意加載方式文件、內(nèi)部數(shù)據(jù)、外部數(shù)據(jù)庫直接加載開放的接口Index傳統(tǒng)RDBMSRelationalTableTypicalRDBMS數(shù)據(jù)按行存儲數(shù)據(jù)與索引分開存放很少的索引類型-B-樹普通關(guān)系數(shù)據(jù)庫為OLTP系統(tǒng)進行優(yōu)化B-treeIndexbestforretrievingonerowatatime計算“NY”州A類商店的平均銷售額當(dāng)表的記錄數(shù)從幾萬條變?yōu)榍f和上億條時,傳統(tǒng)RDBMS技術(shù)面對的問題:表掃描的性能極端低下冗余設(shè)計代價高昂、查詢讀取的無效字段過多低級數(shù)類型數(shù)據(jù)上索引的失效普通索引加載和空間代價,造成不能任意建造即席查詢的SQL順序?qū)π阅苡酗@著影響數(shù)值型比較和運算,無恰當(dāng)手段加速處理傳統(tǒng)RDBMS不適合數(shù)據(jù)倉庫IQM的特殊存儲方式-垂直存儲(按列存儲)SybaseIQM:數(shù)據(jù)是按列存儲的,而不是按行存儲好處:
只存取查詢所需的數(shù)據(jù)數(shù)據(jù)類型是一致的,因而可以很容易被壓縮數(shù)據(jù)庫易于修改和管理SybaseIQM:只讀完成查詢所涉及到的列計算在紐約的“A”類商店的平均銷售額好處:無須使用其他的技術(shù),SybaseIQM就可以減少I/O超過90%IQM的特殊存儲方式-垂直存儲(按列存儲)“HowmanyMALESareNOTINSUREDinCALIFORNIA?GenderMMFMM-800Bytes/Row10MROWSStateNY
CA
CT
MACA-RDBMSInsuredY
Y
NYNM Y CAM N CAF Y NYM N CA1243GenderInsuredState++11011101010110MBits10MBitsx3col/816KPage=235I/Os800Bytesx10M16KPage=500,000I/Os基本上只能使用表掃描查詢過程讀取了太多的無效數(shù)據(jù)IQMExle:I/O的明顯減少IQM的索引特點索引即是數(shù)據(jù)沒有索引和數(shù)據(jù)的分別任何一列可以建立多個索引系統(tǒng)保證至少會存在一個索引(FP)索引的選擇和設(shè)計主要基于:數(shù)據(jù)的級數(shù)(離散值的個數(shù))在查詢中的使用方式和SQL語句的順序無關(guān)索引的種類FastProjection(FP)數(shù)據(jù)壓縮存儲根據(jù)數(shù)據(jù)的特點會自動使用三種方式中的一種LowFast(LF)Bitmap索引HighNonGroup(HNG)Bit-wise索引HighGroup(HG)G-Array(包括一個改進的B-tree)Compare(CMP)列比較Word(WD)字符串查找FP索引有三種內(nèi)部形態(tài)根據(jù)數(shù)據(jù)級數(shù)特征,IQ自動選擇FP中最合適的一種表現(xiàn)形式If級數(shù)>65536FPindexIf級數(shù)<256FFPIndex(Fast-FastProjection)If級數(shù)Between256and65536FFFPIndex(Fast-Fast-FastProjection)FP形式1:FPIndex該列的級數(shù)超過65536原始數(shù)據(jù)在磁盤上壓縮存儲alphaalphabetagammabetabetaFP形式2:FFPIndex列級數(shù)<256內(nèi)部生成一個單字節(jié)的lookup表不僅擁有較好查詢效率,同時得到高效壓縮DataValuesRedBlueGreenRedColorRedBlueGreen123111233
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來汽車行業(yè)技術(shù)能力測試題及答案
- 安全隱患治理及管理的實踐案例分析試題及答案
- 船舶機艙考試題及答案
- 小兒糖尿病試題及答案
- 新能源汽車產(chǎn)業(yè)鏈中的合作與競爭研究試題及答案
- 安全工程師考試行業(yè)變化與趨勢考題研究試題及答案
- 疾病算命測試題及答案
- 民間音樂與其特點分析試題及答案
- 建筑安全管理工具與方法試題及答案
- 師生同臺考試題及答案
- 【2025二輪復(fù)習(xí)】讀后續(xù)寫專題
- 商品房門窗加工合同協(xié)議
- 四年級下冊數(shù)學(xué)口算練習(xí)題
- 《超重康復(fù)之道》課件
- 建筑圖紙識圖培訓(xùn)
- 飛行員勞動合同模板及條款
- 第中西藝術(shù)時空對話 課件 2024-2025學(xué)年嶺南美版(2024) 初中美術(shù)七年級下冊
- 高氧潛水考試題及答案
- 2025年二級建造師之二建礦業(yè)工程實務(wù)通關(guān)考試題庫帶答案解析
- (四調(diào))武漢市2025屆高中畢業(yè)生四月調(diào)研考試 物理試卷(含答案)
- 盲醫(yī)考試題及答案
評論
0/150
提交評論