人臉識別綜述與展望_第1頁
人臉識別綜述與展望_第2頁
人臉識別綜述與展望_第3頁
人臉識別綜述與展望_第4頁
人臉識別綜述與展望_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人臉識別綜述與展望

摘要本文綜述了人臉識別理論的研究現(xiàn)狀,根據(jù)人臉自動識別技術(shù)發(fā)展的時間進行了分類,分析和比較各種識別方法優(yōu)缺點,討論了其中的關(guān)鍵技術(shù)及發(fā)展前景。關(guān)鍵詞人臉識別;特征提取

1人臉識別技術(shù)概述近年來,隨著計算機技術(shù)的迅速發(fā)展,人臉自動識別技術(shù)得到廣泛研究與開發(fā),人臉識別成為近30年里模式識別和圖像處理中最熱門的研究主題之一。人臉識別的目的是從人臉圖像中抽取人的個性化特征,并以此來識別人的身份。一個簡單的自動人臉識別系統(tǒng),包括以下4個方面的內(nèi)容:(1)人臉檢測(Detection):即從各種不同的場景中檢測出人臉的存在并確定其位置。(2)人臉的規(guī)范化(Normalization):校正人臉在尺度、光照和旋轉(zhuǎn)等方面的變化。(3)人臉表征(FaceRepresentation):采取某種方式表示檢測出人臉和數(shù)據(jù)庫中的已知人臉。(4)人臉識別(Recognition):將待識別的人臉與數(shù)據(jù)庫中的已知人臉比較,得出相關(guān)信息。

2人臉識別算法的框架人臉識別算法描述屬于典型的模式識別問題,主要有在線匹配和離線學(xué)習(xí)兩個過程組成,如圖1所示。圖1一般人臉識別算法框架在人臉識別中,特征的分類能力、算法復(fù)雜度和可實現(xiàn)性是確定特征提取法需要考慮的因素。所提取特征對最終分類結(jié)果有著決定性的影響。分類器所能實現(xiàn)的分辨率上限就是各類特征間最大可區(qū)分度。因此,人臉識別的實現(xiàn)需要綜合考慮特征選擇、特征提取和分類器設(shè)計。

3人臉識別的發(fā)展歷史及分類人臉識別的研究已經(jīng)有相當長的歷史,它的發(fā)展大致可以分為四個階段:第一階段:人類最早的研究工作至少可追朔到二十世紀五十年代在心理學(xué)方面的研究和六十年代在工程學(xué)方面的研究。J.S.Bruner于1954年寫下了關(guān)于心理學(xué)的Theperceptionofpeople,Bledsoe在1964年就工程學(xué)寫了FacialRecognitionProjectReport,國外有許多學(xué)校在研究人臉識別技術(shù)[1],其中有從感知和心理學(xué)角度探索人類識別人臉機理的,如美國TexasatDallas大學(xué)的Abdi和Tool小組[2、3],由Stirling大學(xué)的Bruce教授和Glasgow大學(xué)的Burton教授合作領(lǐng)導(dǎo)的小組等;也有從視覺機理角度進行研究的,如英國的Graw小組[4、5]和荷蘭Groningen大學(xué)的Petkov小組等。第二階段:關(guān)于人臉的機器識別研究開始于二十世紀七十年代。Allen和Parke為代表,主要研究人臉識別所需要的面部特征。研究者用計算機實現(xiàn)了較高質(zhì)量的人臉灰度圖模型。這一階段工作的特點是識別過程全部依賴于操作人員,不是一種可以完成自動識別的系統(tǒng)。第三階段:人機交互式識別階段。Harmon和Lesk用幾何特征參數(shù)來表示人臉正面圖像。他們采用多維特征矢量表示人臉面部特征,并設(shè)計了基于這一特征表示法的識別系統(tǒng)。Kaya和Kobayashi則采用了統(tǒng)計識別方法,用歐氏距離來表征人臉特征。但這類方法需要利用操作員的某些先驗知識,仍然擺脫不了人的干預(yù)。第四階段:20世紀90年代以來,隨著高性能計算機的出現(xiàn),人臉識別方法有了重大突破,才進入了真正的機器自動識別階段。在用靜態(tài)圖像或視頻圖像做人臉識別的領(lǐng)域中,國際上形成了以下幾類主要的人臉識別方法:1)基于幾何特征的人臉識別方法基于幾何特征的方法是早期的人臉識別方法之一。常采用的幾何特征有人臉的五官如眼睛、鼻子、嘴巴等的局部形狀特征。臉型特征以及五官在臉上分布的幾何特征。提取特征時往往要用到人臉結(jié)構(gòu)的一些先驗知識。識別所采用的幾何特征是以人臉器官的形狀和幾何關(guān)系為基礎(chǔ)的特征矢量,本質(zhì)上是特征矢量之間的匹配,其分量通常包括人臉指定兩點間的歐式距離、曲率、角度等?;趲缀翁卣鞯淖R別方法比較簡單、容易理解,但沒有形成統(tǒng)一的特征提取標準;從圖像中抽取穩(wěn)定的特征較困難,特別是特征受到遮擋時;對較大的表情變化或姿態(tài)變化的魯棒性較差。2)基于相關(guān)匹配的方法基于相關(guān)匹配的方法包括模板匹配法和等強度線方法。①模板匹配法:Poggio和Brunelli[10]專門比較了基于幾何特征的人臉識別方法和基于模板匹配的人臉識別方法,并得出結(jié)論:基于幾何特征的人臉識別方法具有識別速度快和內(nèi)存要求小的優(yōu)點,但在識別率上模板匹配要優(yōu)于基于幾何特征的識別方法。②等強度線法:等強度線利用灰度圖像的多級灰度值的等強度線作為特征進行兩幅人臉圖像的匹配識別。等強度曲線反映了人臉的凸凹信息。這些等強度線法必須在背景與頭發(fā)均為黑色,表面光照均勻的前提下才能求出符合人臉真實形狀的等強度線。3)基于子空間方法常用的線性子空間方法有:本征子空間、區(qū)別子空間、獨立分量子空間等。此外,還有局部特征分析法、因子分析法等。這些方法也分別被擴展到混合線性子空間和非線性子空間。Turk等[11]采用本征臉(Eigenfaces)方法實現(xiàn)人臉識別。由于每個本征矢量的圖像形式類似于人臉,所以稱本征臉。對原始圖像和重構(gòu)圖像的差分圖像再次進行K-L變換,得到二階本征空間,又稱二階本征臉[12]。Pentland等[13]提出對于眼、鼻和嘴等特征分別建立一個本征子空間,并聯(lián)合本征臉子空間的方法獲得了好的識別結(jié)果。Shan等[14]采用特定人的本征空間法獲得了好于本征臉方法的識別結(jié)果。Albert等[15]提出了TPCA(TopologicalPCA)方法,識別率有所提高。Penev等[16]提出的局部特征分析(LFALocalFeatureAnalysis)法的識別效果好于本征臉方法。當每個人有多個樣本圖像時,本征空間法沒有考慮樣本類別間的信息,因此,基于線性區(qū)別分析(LDALinearDiscriminantAnalysis),Belhumeur等[17]提出了Fisherfaces方法,獲得了較好的識別結(jié)果。Bartlett等[18]采用獨立分量分析(ICA,IndependentComponentAnalysis)的方法識別人臉,獲得了比PCA方法更好的識別效果。4)基于統(tǒng)計的識別方法該類方法包括有:KL算法、奇異值分解(SVD)、隱馬爾可夫(HMM)法。①KL變換:將人臉圖像按行(列)展開所形成的一個高維向量看作是一種隨機向量,因此采用K-L變換獲得其正交K-L基底,對應(yīng)其中較大特征值基底具有與人臉相似的形狀。國外,在用靜態(tài)圖像或視頻圖像做人臉識別的領(lǐng)域中,比較有影響的有MIT的Media實驗室的Pentland小組,他們主要是用基于KL變換的本征空間的特征提取法,名為“本征臉(Eigenface)[19]。②隱馬爾可夫模型:劍橋大學(xué)的Samaria和Fallside[20]對多個樣本圖像的空間序列訓(xùn)練出一個HMM模型,它的參數(shù)就是特征值;基于人臉從上到下、從左到右的結(jié)構(gòu)特征;Samatia等[21]首先將1-DHMM和2-DPseudoHMM用于人臉識別。Kohir等[22]采用低頻DCT系數(shù)作為觀察矢量獲得了好的識別效果,如圖2(a)所示。Eickeler等[23]采用2-DPseudoHMM識別DCT壓縮的JPEG圖像中的人臉圖像;Nefian等采用嵌入式HMM識別人臉[24],如圖2(b)所示。后來集成coupledHMM和HMM通過對超狀態(tài)和各嵌入狀態(tài)采用不同的模型構(gòu)成混合系統(tǒng)結(jié)構(gòu)[25]?;贖MM的人臉識別方法具有以下優(yōu)點:第一,能夠允許人臉有表情變化,較大的頭部轉(zhuǎn)動;第二,擴容性好.即增加新樣本不需要對所有的樣本進行訓(xùn)練;第三,較高的識別率。(a)(b)圖2(a)人臉圖像的1-DHMM(b)嵌入式隱馬爾科夫模型5)基于神經(jīng)網(wǎng)絡(luò)的方法Gutta等[26]提出了混合神經(jīng)網(wǎng)絡(luò)、Lawrence等[27]通過一個多級的SOM實現(xiàn)樣本的聚類,將卷積神經(jīng)網(wǎng)絡(luò)CNN用于人臉識別、Lin等[28]采用基于概率決策的神經(jīng)網(wǎng)絡(luò)方法、Demers等[29]提出采用主元神經(jīng)網(wǎng)絡(luò)方法提取人臉圖像特征,用自相關(guān)神經(jīng)網(wǎng)絡(luò)進一步壓縮特征,最后采用一個MLP來實現(xiàn)人臉識別。Er等[30]采用PCA進行維數(shù)壓縮,再用LDA抽取特征,然后基于RBF進行人臉識別。Haddadnia等[31]基于PZMI特征,并采用混合學(xué)習(xí)算法的RBF神經(jīng)網(wǎng)絡(luò)進行人臉識別。神經(jīng)網(wǎng)絡(luò)的優(yōu)勢是通過學(xué)習(xí)的過程獲得對這些規(guī)律和規(guī)則的隱性表達,它的適應(yīng)性較強。6)彈性圖匹配方法

摘要本文綜述了人臉識別理論的研究現(xiàn)狀,根據(jù)人臉自動識別技術(shù)發(fā)展的時間進行了分類,分析和比較各種識別方法優(yōu)缺點,討論了其中的關(guān)鍵技術(shù)及發(fā)展前景。關(guān)鍵詞人臉識別;特征提取

1人臉識別技術(shù)概述近年來,隨著計算機技術(shù)的迅速發(fā)展,人臉自動識別技術(shù)得到廣泛研究與開發(fā),人臉識別成為近30年里模式識別和圖像處理中最熱門的研究主題之一。人臉識別的目的是從人臉圖像中抽取人的個性化特征,并以此來識別人的身份。一個簡單的自動人臉識別系統(tǒng),包括以下4個方面的內(nèi)容:(1)人臉檢測(Detection):即從各種不同的場景中檢測出人臉的存在并確定其位置。(2)人臉的規(guī)范化(Normalization):校正人臉在尺度、光照和旋轉(zhuǎn)等方面的變化。(3)人臉表征(FaceRepresentation):采取某種方式表示檢測出人臉和數(shù)據(jù)庫中的已知人臉。(4)人臉識別(Recognition):將待識別的人臉與數(shù)據(jù)庫中的已知人臉比較,得出相關(guān)信息。

2人臉識別算法的框架人臉識別算法描述屬于典型的模式識別問題,主要有在線匹配和離線學(xué)習(xí)兩個過程組成,如圖1所示。圖1一般人臉識別算法框架在人臉識別中,特征的分類能力、算法復(fù)雜度和可實現(xiàn)性是確定特征提取法需要考慮的因素。所提取特征對最終分類結(jié)果有著決定性的影響。分類器所能實現(xiàn)的分辨率上限就是各類特征間最大可區(qū)分度。因此,人臉識別的實現(xiàn)需要綜合考慮特征選擇、特征提取和分類器設(shè)計。

3人臉識別的發(fā)展歷史及分類人臉識別的研究已經(jīng)有相當長的歷史,它的發(fā)展大致可以分為四個階段:第一階段:人類最早的研究工作至少可追朔到二十世紀五十年代在心理學(xué)方面的研究和六十年代在工程學(xué)方面的研究。J.S.Bruner于1954年寫下了關(guān)于心理學(xué)的Theperceptionofpeople,Bledsoe在1964年就工程學(xué)寫了FacialRecognitionProjectReport,國外有許多學(xué)校在研究人臉識別技術(shù)[1],其中有從感知和心理學(xué)角度探索人類識別人臉機理的,如美國TexasatDallas大學(xué)的Abdi和Tool小組[2、3],由Stirling大學(xué)的Bruce教授和Glasgow大學(xué)的Burton教授合作領(lǐng)導(dǎo)的小組等;也有從視覺機理角度進行研究的,如英國的Graw小組[4、5]和荷蘭Groningen大學(xué)的Petkov小組等。第二階段:關(guān)于人臉的機器識別研究開始于二十世紀七十年代。Allen和Parke為代表,主要研究人臉識別所需要的面部特征。研究者用計算機實現(xiàn)了較高質(zhì)量的人臉灰度圖模型。這一階段工作的特點是識別過程全部依賴于操作人員,不是一種可以完成自動識別的系統(tǒng)。第三階段:人機交互式識別階段。Harmon和Lesk用幾何特征參數(shù)來表示人臉正面圖像。他們采用多維特征矢量表示人臉面部特征,并設(shè)計了基于這一特征表示法的識別系統(tǒng)。Kaya和Kobayashi則采用了統(tǒng)計識別方法,用歐氏距離來表征人臉特征。但這類方法需要利用操作員的某些先驗知識,仍然擺脫不了人的干預(yù)。第四階段:20世紀90年代以來,隨著高性能計算機的出現(xiàn),人臉識別方法有了重大突破,才進入了真正的機器自動識別階段。在用靜態(tài)圖像或視頻圖像做人臉識別的領(lǐng)域中,國際上形成了以下幾類主要的人臉識別方法:1)基于幾何特征的人臉識別方法基于幾何特征的方法是早期的人臉識別方法之一。常采用的幾何特征有人臉的五官如眼睛、鼻子、嘴巴等的局部形狀特征。臉型特征以及五官在臉上分布的幾何特征。提取特征時往往要用到人臉結(jié)構(gòu)的一些先驗知識。識別所采用的幾何特征是以人臉器官的形狀和幾何關(guān)系為基礎(chǔ)的特征矢量,本質(zhì)上是特征矢量之間的匹配,其分量通常包括人臉指定兩點間的歐式距離、曲率、角度等?;趲缀翁卣鞯淖R別方法比較簡單、容易理解,但沒有形成統(tǒng)一的特征提取標準;從圖像中抽取穩(wěn)定的特征較困難,特別是特征受到遮擋時;對較大的表情變化或姿態(tài)變化的魯棒性較差。2)基于相關(guān)匹配的方法基于相關(guān)匹配的方法包括模板匹配法和等強度線方法。①模板匹配法:Poggio和Brunelli[10]專門比較了基于幾何特征的人臉識別方法和基于模板匹配的人臉識別方法,并得出結(jié)論:基于幾何特征的人臉識別方法具有識別速度快和內(nèi)存要求小的優(yōu)點,但在識別率上模板匹配要優(yōu)于基于幾何特征的識別方法。②等強度線法:等強度線利用灰度圖像的多級灰度值的等強度線作為特征進行兩幅人臉圖像的匹配識別。等強度曲線反映了人臉的凸凹信息。這些等強度線法必須在背景與頭發(fā)均為黑色,表面光照均勻的前提下才能求出符合人臉真實形狀的等強度線。3)基于子空間方法常用的線性子空間方法有:本征子空間、區(qū)別子空間、獨立分量子空間等。此外,還有局部特征分析法、因子分析法等。這些方法也分別被擴展到混合線性子空間和非線性子空間。Turk等[11]采用本征臉(Eigenfaces)方法實現(xiàn)人臉識別。由于每個本征矢量的圖像形式類似于人臉,所以稱本征臉。對原始圖像和重構(gòu)圖像的差分圖像再次進行K-L變換,得到二階本征空間,又稱二階本征臉[12]。Pentland等[13]提出對于眼、鼻和嘴等特征分別建立一個本征子空間,并聯(lián)合本征臉子空間的方法獲得了好的識別結(jié)果。Shan等[14]采用特定人的本征空間法獲得了好于本征臉方法的識別結(jié)果。Albert等[15]提出了TPCA(TopologicalPCA)方法,識別率有所提高。Penev等[16]提出的局部特征分析(LFALocalFeatureAnalysis)法的識別效果好于本征臉方法。當每個人有多個樣本圖像時,本征空間法沒有考慮樣本類別間的信息,因此,基于線性區(qū)別分析(LDALinearDiscriminantAnalysis),Belhumeur等[17]提出了Fisherfaces方法,獲得了較好的識別結(jié)果。Bartlett等[18]采用獨立分量分析(ICA,IndependentComponentAnalysis)的方法識別人臉,獲得了比PCA方法更好的識別效果。4)基于統(tǒng)計的識別方法該類方法包括有:KL算法、奇異值分解(SVD)、隱馬爾可夫(HMM)法。①KL變換:將人臉圖像按行(列)展開所形成的一個高維向量看作是一種隨機向量,因此采用K-L變換獲得其正交K-L基底,對應(yīng)其中較大特征值基底具有與人臉相似的形狀。國外,在用靜態(tài)圖像或視頻圖像做人臉識別的領(lǐng)域中,比較有影響的有MIT的Media實驗室的Pentland小組,他們主要是用基于KL變換的本征空間的特征提取法,名為“本征臉(Eigenface)[19]。②隱馬爾可夫模型:劍橋大學(xué)的Samaria和Fallside[20]對多個樣本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論