畢業(yè)設(shè)計(jì)(論文)-小型電子聲光禮花器設(shè)計(jì)_第1頁
畢業(yè)設(shè)計(jì)(論文)-小型電子聲光禮花器設(shè)計(jì)_第2頁
畢業(yè)設(shè)計(jì)(論文)-小型電子聲光禮花器設(shè)計(jì)_第3頁
畢業(yè)設(shè)計(jì)(論文)-小型電子聲光禮花器設(shè)計(jì)_第4頁
畢業(yè)設(shè)計(jì)(論文)-小型電子聲光禮花器設(shè)計(jì)_第5頁
已閱讀5頁,還剩50頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

題目小型電子聲光禮花器設(shè)計(jì)學(xué)生姓名學(xué)號(hào)所在學(xué)院專業(yè)班級(jí)電子信息工程專業(yè)12級(jí)3班指導(dǎo)教師______完成地點(diǎn)陜西理工學(xué)院__2016年6月5日陜西理工學(xué)院畢業(yè)設(shè)計(jì) 小型電子聲光禮花器設(shè)計(jì)作者:(陜西理工學(xué)院物理與電信工程學(xué)院電子信息工程專業(yè)12級(jí)3班,陜西漢中723001)指導(dǎo)老師:[摘要]小型電子聲光禮花器是模擬禮花燃放裝置,節(jié)日和慶典時(shí)燃放禮花,其絢麗繽紛的圖案,熱烈的爆炸聲、歡樂的氣氛,能給人們留下美好的印象。本次課題通過電子元器件完成控制、發(fā)聲、發(fā)光、按鍵四個(gè)模塊對(duì)傳統(tǒng)禮花器效果進(jìn)行實(shí)現(xiàn),采用STC89C52RC單片機(jī)最小系統(tǒng)對(duì)電子禮花器各個(gè)部分進(jìn)行實(shí)時(shí)控制,避免了傳統(tǒng)禮花人為控制所存在的一定的煙塵污染和爆炸的安全隱患,采用蜂鳴器取代傳統(tǒng)發(fā)聲效果,并添加一定歌曲使音樂效果更加豐富,采用LED點(diǎn)陣取代傳統(tǒng)花炮單一效果表現(xiàn),展現(xiàn)更多種花型、字型很大程度彌補(bǔ)傳統(tǒng)禮花的花型單調(diào)缺陷,采用按鍵開關(guān)對(duì)禮花器的進(jìn)行進(jìn)度實(shí)時(shí)控制,解決了傳統(tǒng)禮花器的控制弊端。本課題設(shè)計(jì)可以模擬禮花燃放裝置,達(dá)到聲型兼?zhèn)涞男Ч?,給人們?cè)诎踩?、環(huán)保的環(huán)境中帶來輕松愉快的氛圍。電路結(jié)構(gòu)新穎元件不多、調(diào)試簡(jiǎn)單。可供小型企業(yè)工程技術(shù)人員開發(fā)設(shè)計(jì)參考。該裝置可很大程度解決傳統(tǒng)禮花器燃放帶來的對(duì)空氣污染問題,其可重復(fù)使用性更大程度上解決了人們重復(fù)使用的需求,并且電子禮花器的使用范圍更加廣泛,家庭聚會(huì)、聯(lián)歡晚會(huì)、兒童玩具都可以使用。[關(guān)鍵詞]小型;禮花器;單片機(jī)DesignofSmallElectronicSoundandLightFireworksAuthor:TeLi(Grade12,Class3,Majorelectronic1sandinformationengineering,SchoolofPhysicsandElectronicInformationEngineering,ShaanxiUniversityofTechnology,Hanzhong723001,Shaanxi)Tutor:ChunjiangShuaiAbstract:Smallelectronicsoundandlightfireworksarefireworkssimulationdevice,whenfireworksfestival,apatternofradiation,thermalexplosion,festiveatmosphere,givingagoodimpression.Thispaperisdesignedtosimulatefireworksdevicetoachievethetypeofsoundandeffectsbytheelectroniccomponents,somedustpollutionandtheriskofexplosionhazardsafety,environment,people'senvironmentalprotectionhasbroughtarelaxedatmosphere.UseSTC89C52RCsmallestsingle-chipsystemforeachpartoftheelectronicfireworks,realtimecontrol.Usebuzzertoreplacethetraditionalsoundeffect.Andaddsomesongsmakemusicrichereffect.UseLEDdotmatrixinsteadoftraditionalfireworksshowthatcanshowmorefontandflower.Thekeyswitchtosolvethedrawbacksoftro=aditionalfireworksdevicecontrol.TheThenewcircuitstructure,elementsmall,easytodebug,forhomemade.Itcanalsobeusedforsmallbusinessesopendesignengineeringandtechnicalpersonnelreference.Thedevicecanbeusedforfamily,friends,celebration,party,children'stoysandsomeinterestingplacesKeywords:Smallelectronicacousto-opticceremonyFlower;Festivalfireworks;Environmentalprotection頁共49頁引言課題研究的背景及意義在工程上的目的和意義:每年世界各國(guó)節(jié)日和慶典時(shí)都會(huì)燃放禮花,其絢麗繽紛的圖案,熱烈的爆炸聲所帶來的歡樂的氣氛,能給人們留下美好的印象,但是因?yàn)槿挤艧熁ū穸茐沫h(huán)境,煙花爆竹的不正確使用而發(fā)生各種危險(xiǎn)的情況也時(shí)有發(fā)生。隨著環(huán)境保護(hù)意識(shí)和自我保護(hù)意識(shí)的增強(qiáng),我國(guó)各城市為了保護(hù)環(huán)境,預(yù)防一定的煙塵污染和爆炸危險(xiǎn)隱患,相繼出臺(tái)了各項(xiàng)規(guī)定,節(jié)假日在市區(qū)范圍內(nèi)禁止燃放煙花爆竹。受到電子鞭炮的啟發(fā),本設(shè)計(jì)采用LED燈作為顯示模塊模擬禮花綻放時(shí)的形態(tài),之所以用LED燈取代小型燈泡作為電子禮花器的顯示器件,是因?yàn)長(zhǎng)ED燈具有節(jié)能,工作壽命長(zhǎng),亮度高,發(fā)光顏色多,響應(yīng)快等優(yōu)點(diǎn)。另外電子禮花器的發(fā)展與應(yīng)用在節(jié)約能源、保護(hù)環(huán)境方面都具有重要的意義。在設(shè)計(jì)上的目的和意義:本課題研究的是小型電子聲光禮花器主要通過單片機(jī)控制電路來驅(qū)動(dòng)模擬禮花色彩的發(fā)光電路和模擬禮花爆炸聲的發(fā)聲電路,從而達(dá)到模擬禮花的燃放的裝置,達(dá)到聲型兼并的效果,電路結(jié)構(gòu)新穎、元件不多、調(diào)試容易、適合自制,也可以供小型企業(yè)工程技術(shù)人員開放設(shè)計(jì)參考。課題研究的現(xiàn)狀及發(fā)展趨勢(shì)國(guó)外歐美發(fā)達(dá)國(guó)家極少生產(chǎn)煙花,其主要原因是生產(chǎn),儲(chǔ)存及運(yùn)輸過程中容易產(chǎn)生爆炸,非常危險(xiǎn)。這些國(guó)家主要從發(fā)展中國(guó)家進(jìn)口,中國(guó)作為火藥發(fā)明國(guó)和火藥生產(chǎn)的傳統(tǒng)地,自然是最大的輸出國(guó)。在國(guó)外也有一些發(fā)展中國(guó)家的專業(yè)廠家生產(chǎn)禮花器。這些企業(yè)對(duì)煙花生產(chǎn)的研究比較少,主要是對(duì)燃放效果進(jìn)行研究,例如應(yīng)用計(jì)算機(jī)來進(jìn)行對(duì)燃放的時(shí)間和燃放的先后順序的控制,以達(dá)到預(yù)期的燃放效果,給人們留下美好的視覺感受。我國(guó)是世界花炮市場(chǎng)中當(dāng)之無愧的花炮的主要原產(chǎn)地,大約占世界花炮總產(chǎn)值的80%,年產(chǎn)值超過100億元。湖南省的瀏陽市是我國(guó)最大的煙花爆竹生產(chǎn)基地。禮花器是瀏陽花炮中的主要出口產(chǎn)品,也是國(guó)內(nèi)外舉辦各種慶典活動(dòng)時(shí)必備的消費(fèi)品,約占全市總產(chǎn)量的33%。現(xiàn)在,瀏陽生產(chǎn)的禮花彈主要以黃板紙為材料,紙張等原輔材料的消耗高,邊角廢料的利用率低以及紙張價(jià)格的不斷上漲,人們環(huán)保意識(shí)的不斷增強(qiáng)已成為禮花彈發(fā)展的瓶頸。以年產(chǎn)禮花彈10萬箱,創(chuàng)產(chǎn)值2000萬元的企業(yè)為例,每年用來做禮花彈殼的黃板紙為150噸,按現(xiàn)行價(jià)格1900元/噸計(jì)算,需28.5萬元。紙張的損耗高達(dá)35%,即每年有近6萬元資金變成邊角廢料而白白流失。這種規(guī)模的企業(yè)每年各種紙張的邊角廢料高達(dá)30萬噸,這不得不說是一筆非常驚人的浪費(fèi)。然而僅限于目前的生產(chǎn)工藝,這種浪費(fèi)是無可避免的[1]。電子禮花器的環(huán)?;瞧浒l(fā)展的必然趨勢(shì),環(huán)?;梢允闺娮佣Y花器更加的市場(chǎng)化,并使電子禮花器進(jìn)入更加廣泛的應(yīng)用領(lǐng)域,特別是在娛樂場(chǎng)所的應(yīng)用,另外電子禮花器的發(fā)展與應(yīng)用在節(jié)約能源、節(jié)約資源及保護(hù)環(huán)境方面都具有重要的意義。課題研究的內(nèi)容本設(shè)計(jì)主要是分析對(duì)比煙花禮炮的優(yōu)缺點(diǎn)。研究思路針對(duì)相對(duì)簡(jiǎn)單的電子技術(shù)來設(shè)計(jì),重點(diǎn)針對(duì)電子禮花器發(fā)光部分的工作特性。本設(shè)計(jì)采用STC89C52RC芯片作為硬件核心,具有在線編程功能,低功耗,能于5V的超低壓工作,該芯片采用Flash

ROM,內(nèi)部具有8KB

ROM存儲(chǔ)空間。顯示部分采用16X16的LED點(diǎn)陣,顯示功能強(qiáng)大,可顯示大量文字、圖形,顯示多樣、清晰。并且使用74HC595芯片對(duì)LED顯示電路進(jìn)行外接,不僅減少了I/O口的占有率,而且為以后添加顯示部分,從而使顯示部件更加豐富提供了便利的條件。本設(shè)計(jì)針對(duì)電子禮花器,主要采用電子制作裝置,由模擬禮花色彩的發(fā)光電路、模擬禮花爆炸聲的發(fā)聲電路和按鍵控制部分三部分構(gòu)成??傮w方案設(shè)計(jì)設(shè)計(jì)要求(1)模擬的禮花燃放聲音要有0.1s—1s的停頓時(shí)間;(2)效果模仿時(shí),要將紅綠藍(lán)三個(gè)發(fā)光二極管呈三角形裝置;(3)有條件可在發(fā)光的前方裝置由透光口組成的禮花圖案的面板。方案選擇單片機(jī)芯片的方案方案(一):小型電子聲光禮花器通過555振蕩電路來驅(qū)動(dòng)模擬禮花色彩的發(fā)光電路和模擬禮花爆炸聲的發(fā)聲電路,模擬禮花燃放裝置,達(dá)到聲型兼并的效果。方案(二):STC12C5A60S軟件芯片對(duì)顯示部件進(jìn)行控制,使顯示更加立體,豐富。方案(三):STC89C52RC是STC公司生產(chǎn)的一種功耗低、性能高CMOS8位微控制器,具有8K在線系統(tǒng)可編程Flash存儲(chǔ)器。STC89C52RC使用經(jīng)典的MCS-51內(nèi)核,但做了很多的改進(jìn)使得芯片具有傳統(tǒng)51單片機(jī)不具備的功能。在單一芯片上,擁有8位CPU和在線系統(tǒng)可編程Flash,使得STC89C52RC為眾多的嵌入式控制應(yīng)用系統(tǒng)提供了高靈活、超有效的解決方案。具有以下的標(biāo)準(zhǔn)功能:8k字節(jié)的Flash,512字節(jié)的RAM,看門狗定時(shí)器,32位I/O口線,內(nèi)置4KBEEPROM,MAX810復(fù)位電路,3個(gè)16位定時(shí)器/計(jì)數(shù)器,2個(gè)外部中斷,全雙工串行口。另外STC89C52RC可降至0Hz靜態(tài)邏輯操作,支持2種軟件可選擇節(jié)電模式[2]??臻e模式下,CPU停止工作,允許RAM、定時(shí)器/計(jì)數(shù)器、串口、中斷繼續(xù)工作。掉電保護(hù)方式下,RAM內(nèi)容被保存,振蕩器被凍結(jié),單片機(jī)一切工作停止,直到下一個(gè)中斷或硬件復(fù)位為止。最高運(yùn)作頻率35MHz,6T/12T可選。下載程序方面直接串口就可以下載。本方案中用到的是STC89C52RC。顯示模塊的方案方案(一):LED點(diǎn)陣是由多個(gè)發(fā)光二極管封裝在一起組成的器件,通過控制相應(yīng)的二極管的狀態(tài)顯示相應(yīng)的數(shù)字,花型,字母。LED數(shù)碼管要正常顯示,就要用驅(qū)動(dòng)電路來驅(qū)動(dòng)LED點(diǎn)陣顯示多個(gè)LED,從而顯示出我們要的數(shù)字,字母,花型。方案(二):LED發(fā)光二極管易于安裝,組合花型,且便于復(fù)查,但考慮到顯示電路不僅用于顯示單一樣式,所以方案一更適用于整體方案當(dāng)中。方案(三):LED立體點(diǎn)陣,采用4X4X4LED發(fā)光二極管組成立體點(diǎn)陣,完成立體多重花型顯示。經(jīng)比較LED點(diǎn)陣的顯示多樣性,所以采用LED點(diǎn)陣為顯示部件。發(fā)聲模塊的方案方案:采用單片機(jī)STC89C52RC芯片發(fā)聲。STC89C52RC內(nèi)部設(shè)置有3個(gè)16位定時(shí)器/計(jì)數(shù)器都具有計(jì)數(shù)方式和定時(shí)方式兩種工作方式,STC89C52RC的定時(shí)功能是通過對(duì)外部晶振的提供的脈沖進(jìn)行計(jì)數(shù),從而達(dá)到控制發(fā)聲電路功能,因此可以利用STC89C52RC的該功能實(shí)現(xiàn)控制蜂鳴器,從而達(dá)到發(fā)聲系統(tǒng)的正常功能實(shí)現(xiàn)[3]。按鍵模塊的方案方案:使用獨(dú)立式鍵盤。獨(dú)立式鍵盤是直接用I/O口線構(gòu)成的單個(gè)按鍵電路。獨(dú)立式按鍵電路配置靈活,軟件結(jié)構(gòu)簡(jiǎn)單。綜上各方案所述:采用STC89C52RC作為主控制系統(tǒng),12M晶振提供時(shí)鐘信號(hào),LED16X16點(diǎn)陣作為顯示部分,獨(dú)立按鍵進(jìn)行發(fā)聲系統(tǒng)切換選擇,蜂鳴器作為發(fā)聲系統(tǒng),系統(tǒng)框圖如圖2.1所示。晶振模塊晶振模塊(12MHz)STC89C52RC主控模塊外接電源5V16X16LED點(diǎn)陣按鍵模塊蜂鳴器圖2.1小型電子聲光禮花器系統(tǒng)框圖系統(tǒng)硬件設(shè)計(jì)單片機(jī)控制模塊STC89C52RC的簡(jiǎn)介STC89C52RC是STC公司生產(chǎn)的一種低功耗、高性能CMOS8位微控制器,具有8K在系統(tǒng)可編程Flash存儲(chǔ)器。STC89C52RC使用經(jīng)典的MCS-51內(nèi)核,但做了很多的改進(jìn)使得芯片具有傳統(tǒng)51單片機(jī)不具備的功能。在單一芯片上,擁有8位CPU和在系統(tǒng)可編程Flash,使得STC89C52RC為眾多嵌入式控制應(yīng)用系統(tǒng)提供高靈活、超有效的解決方案。STC89C52RC具有以下的標(biāo)準(zhǔn)功能:8k字節(jié)Flash;512字節(jié)RAM;看門狗定時(shí)器;32位I/O口線;內(nèi)置4KBEEPROM;MAX810復(fù)位電路;3個(gè)16位定時(shí)器/計(jì)數(shù)器;2個(gè)外部中斷,全雙工串行口;STC89C52RC可降至0Hz靜態(tài)邏輯操作,支持2種軟件可選擇節(jié)電模式。空閑模式下,CPU停止工作,允許RAM、定時(shí)器/計(jì)數(shù)器、串口、中斷繼續(xù)工作。掉電保護(hù)方式下,RAM內(nèi)容被保存,振蕩器被凍結(jié),單片機(jī)一切工作停止,直到下一個(gè)中斷或硬件復(fù)位為止;最高運(yùn)作頻率35MHz,6T/12T可選;下載程序方面直接串口就可以下載[2]。STC89C52RC具有下列主要性能:增強(qiáng)型8051

單片機(jī),6時(shí)鐘/

機(jī)器周期和12時(shí)鐘/機(jī)器周期可以任意選擇,指令代碼完全兼容傳統(tǒng)8051;工作電壓:5.5V~3.3V(5V單片機(jī))/3.8V~2.0V(3V單片機(jī));工作頻率范圍:0~40MHz,相當(dāng)于普通8051的0~80MHz,實(shí)際工作頻率可達(dá)48MHz

;用戶應(yīng)用程序空間為8K

字節(jié)

;片上集成512字節(jié)RAM

;通用I/O口(32個(gè)),復(fù)位后為:P0/P1/P2/P3是

準(zhǔn)雙向口/弱上拉,P0口是漏極開路輸出,作為總線擴(kuò)展用時(shí),不用加上拉電阻,作為I/O口用時(shí),阻;ISP/IAP,器,器,可通過串口(RxD/P3.0,TxD/P3.1)序,數(shù)秒即可完成一片

;具有EEPROM功能

;能

;共3個(gè)16位

定時(shí)器/計(jì)數(shù)器。即定時(shí)器T0、T1、T2

;外部中斷2路,觸發(fā)電路,PowerDown模式可由外部中斷低電平觸發(fā)中斷方式喚醒

[4];口(UART),個(gè)UART

;工作溫度范圍:-40~+85℃(工業(yè)級(jí))/0~75℃(商業(yè)級(jí));PDIP

封裝。STC89C52RC芯片的管腳、引線與功能STC89C52RC單片機(jī)的管腳說明如圖3.1所示。圖3.1STC89C52RC管腳圖主要電源引腳VCC電源端;GND接地端。外接晶體引腳XTAL1和XTAL2XTAL1:接外部石英晶體的一端。在單片機(jī)內(nèi)部,它是構(gòu)成片內(nèi)振蕩器的反相放大器的輸入端。當(dāng)采用外部時(shí)鐘時(shí),對(duì)于HMOS單片機(jī),該引腳接地;對(duì)于CHMOS單片機(jī),該引腳作為外部振蕩信號(hào)的輸入端。XTAL2:接外部石英晶體的另一個(gè)端。在單片機(jī)內(nèi)部,它是片內(nèi)振蕩器的反相放大器的輸出端。采用外部時(shí)鐘時(shí),對(duì)于HMOS單片機(jī),該引腳作為外部振蕩信號(hào)的輸入端;對(duì)于CHMOS單片機(jī),該引腳懸空不接。控制或與其它電源復(fù)用引腳RST、ALE/、和/VPP:端。時(shí),期單片機(jī)復(fù)位。ALE/:地址鎖存有效信號(hào)輸出端。在訪問片外程序存儲(chǔ)器期間,ALE以每機(jī)器周期兩次進(jìn)行信號(hào)輸出,其下降沿用于控制鎖存P0輸出的低8位地址。在不訪問片外程序存儲(chǔ)器時(shí),ALE端仍以上述的頻率(振蕩頻率的1/6),出現(xiàn),可作對(duì)外輸出的時(shí)鐘脈沖或用于定時(shí)目的。但要注意,在訪問片外數(shù)據(jù)存儲(chǔ)器時(shí),ALE脈沖會(huì)跳空一個(gè)。對(duì)于片內(nèi)含有EPROM的機(jī)型,在編程期間,該引腳用作編程脈沖()[5]。:片外程序存儲(chǔ)器讀選通信號(hào)輸出端,低電平有效。當(dāng)STC89C52RC從外部程序存儲(chǔ)器讀取指令或常數(shù)期間,在每個(gè)機(jī)器周期內(nèi)該信號(hào)兩次有效。以通過數(shù)據(jù)總線P0口讀回指令或常熟。在訪問片外數(shù)據(jù)存儲(chǔ)器期間,信號(hào)將不出現(xiàn)。/VPP:為片外程序存儲(chǔ)器選用端。該引腳有效(低電平)時(shí),只選用片外程序存儲(chǔ)器,否則單片機(jī)上電或復(fù)位后選用片內(nèi)程序存儲(chǔ)器。輸入/輸出引腳P0.0~P0.7、P1.0~P1.7、P2.0~P2.7和P3.0~P3.7P0端口(P0.0~P0.7):P0口是漏極開路輸出,作為總線擴(kuò)展用時(shí),不用加上拉電阻,作為I/O口用時(shí),阻,在不接片外存儲(chǔ)器與不擴(kuò)展I/O口時(shí),可作為準(zhǔn)雙向輸入/輸出口。在接有片外存儲(chǔ)器或擴(kuò)展I/O口時(shí),P0口分時(shí)復(fù)用為低8位地址總線和雙向數(shù)據(jù)總線。P1端口(P1.0~P1.7):P1口是一個(gè)帶有內(nèi)部上拉電阻的8位I/O口,P1的輸出緩沖級(jí)可以驅(qū)動(dòng)4個(gè)TTL邏輯門電路。可作為準(zhǔn)雙向I/O口。對(duì)于52子系列,P1.0與P1.1還有第二功能:P1.0可用作定時(shí)/計(jì)數(shù)器2的計(jì)數(shù)脈沖輸入端T2;P1.1可用作定時(shí)/計(jì)數(shù)器2的外部控制端T2EX。P2端口(P2.0~P2.7):P2口是一個(gè)帶有內(nèi)部上拉電阻的8位I/O口,P1的輸出緩沖級(jí)可以驅(qū)動(dòng)4個(gè)TTL邏輯門電路??勺鳛闇?zhǔn)雙向I/O口使用;在接有片外存儲(chǔ)器或擴(kuò)展I/O口且尋址范圍超過256B時(shí),P2口用作高8位地址總線。P3端口(P3.0~P3.7):P3口是一個(gè)帶有內(nèi)部上拉電阻的8位I/O口,P1的輸出緩沖級(jí)可以驅(qū)動(dòng)4個(gè)TTL邏輯門電路。除作為準(zhǔn)雙向I/O口使用外,還可以將每一位用于第二功能,而且P3口的每一條引腳均可獨(dú)立定義為第一功能的輸入輸出或第二功能。P3口的第二功能見表3.1.表3.1P3端口的特殊功能端口引腳兼用功能P3.0RXD(串行口輸入端)P3.1TXD(串行口輸出端)P3.2(外部中斷0請(qǐng)求輸入端,低電平有效)P3.3(外部中斷1請(qǐng)求輸入端,低電平有效)P3.4T0(定時(shí)/計(jì)數(shù)器0計(jì)數(shù)脈沖輸入端)P3.5T1(定時(shí)/計(jì)數(shù)器1計(jì)數(shù)脈沖輸入端)P3.6(外部數(shù)據(jù)存儲(chǔ)器寫選通信號(hào)輸出端,低電平有效)P3.7(外部數(shù)據(jù)存儲(chǔ)器讀選通信號(hào)輸出端,低電平有效)單片機(jī)主控制模塊電路單片機(jī)控制系統(tǒng)如圖3.2所示,18引腳和19引腳接振蕩電路,XTAL1和XTAL2分別接外部12MHz的石英晶振和33pF電容的一端,在片內(nèi)它們分別是振蕩器倒相放大器的輸入和輸出。第9引腳為復(fù)位輸入端,接上電容,電阻后構(gòu)成上電復(fù)位電路,20引腳為接地端,40引腳為5V電源端。單片機(jī)最小系統(tǒng)一般應(yīng)該包括:?jiǎn)纹瑱C(jī)、時(shí)鐘電路、復(fù)位電路、輸入/輸出設(shè)備等。此設(shè)計(jì)中P2口作為輸出口用來驅(qū)動(dòng)LED顯示。圖3..2單片機(jī)控制系統(tǒng)顯示模塊8X8LED點(diǎn)陣簡(jiǎn)介L(zhǎng)ED顯示屏是一種通過控制半導(dǎo)體發(fā)光二極管的顯示方式,可以用來制作顯示文字、圖形、圖像、動(dòng)畫、視頻、錄像信號(hào)等各種信息的顯示屏幕。圖文顯示屏可與計(jì)算機(jī)同步顯示漢字、英文文本和圖形;視頻顯示屏采用微型計(jì)算機(jī)進(jìn)行控制,圖文、圖像并茂,以實(shí)時(shí)、同步、清晰的信息傳播方式播放各種信息,還可顯示二維、三維動(dòng)畫、錄像、電視、VCD節(jié)目以及現(xiàn)場(chǎng)實(shí)況[6]。LED顯示屏顯示畫面清晰,色彩鮮艷,立體感強(qiáng),給人一種身臨其境的感覺。LED顯示屏現(xiàn)已廣泛應(yīng)用于路口的廣告牌、車站、火車站、碼頭、機(jī)場(chǎng)、小型商鋪、大型商場(chǎng)、醫(yī)院、賓館、銀行等其它公共場(chǎng)所。它的優(yōu)點(diǎn)是亮度高、工作電壓很低、功耗較小、小型化、組裝簡(jiǎn)單、容易與集成電路相互匹配、驅(qū)動(dòng)電壓電流較低、壽命很長(zhǎng)、耐沖擊能力強(qiáng)、性能穩(wěn)定。8X8LED的引腳功能及結(jié)構(gòu)LED(8X8)點(diǎn)陣的引腳排列及內(nèi)部結(jié)構(gòu),圖3.4為8×8點(diǎn)陣LED外觀及引腳圖,只要其對(duì)應(yīng)的X、Y軸順向偏壓,即可使LED發(fā)亮。例如如果想使左上角LED點(diǎn)亮,則Y0=1,X0=0即可。應(yīng)用時(shí)限流電阻可以放在X軸或Y軸。圖3.48X8點(diǎn)陣LED外觀及引腳圖8X8LED的工作原理LED陣列的顯示方式是按顯示編碼的順序,一行一行地顯示。每一行的顯示時(shí)間大約為3.2ms,由于人類的視覺暫留現(xiàn)象,將感覺到8行LED是在同時(shí)顯示的。若顯示的時(shí)間太短,則亮度不夠,若顯示的時(shí)間太長(zhǎng),將會(huì)感覺到閃爍。本文采用低電平逐行掃描,高電平輸出顯示信號(hào)。即輪流給行信號(hào)輸出低電平,在任意時(shí)刻只有一行發(fā)光二極管是處于可以被點(diǎn)亮的狀態(tài),其它行都處于熄滅狀態(tài)。16X16LED與單片機(jī)接口電路電路原理圖如圖3.6所示,16X16LED需要32條線,為了節(jié)省I/O口的占用率,本設(shè)計(jì)采用了4塊74HC595來驅(qū)動(dòng)LED點(diǎn)陣,當(dāng)單片機(jī)接收到有按鍵按下的信號(hào)時(shí),會(huì)把數(shù)據(jù)和時(shí)鐘信號(hào)傳遞給74HC595,74HC595會(huì)在時(shí)鐘信號(hào)的上升沿時(shí)將接收到的數(shù)據(jù)存儲(chǔ)在移位寄存器中,在下一個(gè)上升沿時(shí)將移位寄存器中的數(shù)據(jù)存進(jìn)數(shù)據(jù)鎖存器中,當(dāng)輸出信號(hào)有效時(shí),就會(huì)將鎖存器中的數(shù)據(jù)通過輸出端并行輸出,從而點(diǎn)亮LED點(diǎn)陣。圖3.616X16LED與單片機(jī)的連接電路原理圖發(fā)聲電路模塊實(shí)際使用時(shí),用8550三極管來驅(qū)動(dòng)蜂鳴器。但是仿真時(shí),因?yàn)檐浖袥]有8550,選擇了lm386來替代8550來做仿真。如圖3.7所示。揚(yáng)聲器一管腳接入lm386輸出端,另一管腳接地,lm386的輸入端一個(gè)接STC89C52RC的P2.4輸出管腳,另一個(gè)接地。如圖所示,當(dāng)STC89C52RC芯片接入電源,控制系統(tǒng)正常運(yùn)作,使得lm386內(nèi)部其中一個(gè)三極管的Vc<Vb<Ve,使得集電結(jié)反偏,發(fā)射結(jié)正偏,管子發(fā)射極電流流入管子,基極電流和集電極電流流出管子,完成三極管的放大控制作用[9],實(shí)現(xiàn)蜂鳴器音樂播放。圖3.7蜂鳴器模塊電路按鍵模塊如圖3.8所示,為獨(dú)立按鍵模塊。K1接單片機(jī)的P1.0口,當(dāng)K1被按下時(shí),單片機(jī)接收到K1被按下的信號(hào),通過程序控制點(diǎn)亮LED點(diǎn)陣上相應(yīng)的LED燈,達(dá)到顯示漢字的效果。K2接單片機(jī)的P1.1口,當(dāng)K2被按下時(shí),單片機(jī)接收到K2被按下的信號(hào),通過程序控制點(diǎn)亮LED點(diǎn)陣上相應(yīng)的LED燈,達(dá)到顯示圖形的效果。K3接單片機(jī)的P1.2口,當(dāng)K3被按下時(shí),單片機(jī)接收到K3被按下的信號(hào),通過程序控制點(diǎn)亮LED點(diǎn)陣上相應(yīng)的LED燈,達(dá)到顯示花型的效果。K4接單片機(jī)的P1.3口,當(dāng)K3被按下時(shí),單片機(jī)接收到K3被按下的信號(hào),通過程序控制點(diǎn)亮LED點(diǎn)陣上相應(yīng)的LED燈,達(dá)到連續(xù)顯示漢字,圖形,花型的效果。K5接單片機(jī)的P1.4口,當(dāng)K5被按下時(shí),單片機(jī)接收到K5被按下的信號(hào),通過程序控制,自動(dòng)跳轉(zhuǎn)到音樂播放子程序,達(dá)到播放音樂的效果。圖3.8獨(dú)立按鍵模塊系統(tǒng)仿真仿真工具簡(jiǎn)介Proteus軟件介紹Proteus軟件是英國(guó)Labcenterelectronics公司出版的EDA工具軟件(該軟件中國(guó)總代理為廣州風(fēng)標(biāo)電子技術(shù)有限公司)。它不僅具有其它EDA工具軟件的仿真功能,還能仿真單片機(jī)及外圍器件。它是目前最好的仿真單片機(jī)及外圍器件的工具。雖然目前國(guó)內(nèi)推廣剛起步,但已受到單片機(jī)愛好者、從事單片機(jī)教學(xué)的教師、致力于單片機(jī)開發(fā)應(yīng)用的科技工作者的青睞[8]。它是一個(gè)集模擬電路、數(shù)字電路、模數(shù)混合電路以及多種微控制器系統(tǒng)為一體的系統(tǒng)設(shè)計(jì)和仿真平臺(tái),8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年又增加了Cortex和DSP系列處理器,并持續(xù)添加其它系列的處理器模型。面,它也支持IAR、Keil和MPLAB用。Proteus是世界上著名的EDA工具(仿真軟件),從原理圖布圖、代碼調(diào)試到單片機(jī)與外圍電路協(xié)同仿真,一鍵切換到PCB設(shè)計(jì),真正實(shí)現(xiàn)了從概念到產(chǎn)品的完整設(shè)計(jì)[10]。功能特點(diǎn):Proteus軟件具有其它EDA工具軟件(例:multisim)的功能。這些功能是:原理布圖;PCB自動(dòng)或人工布線;SPICE電路仿真。革命性的特點(diǎn)1.互動(dòng)的電路仿真用戶甚至可以實(shí)時(shí)采用諸如RAM,ROM,鍵盤,馬達(dá),LED,LCD,AD/DA,部分SPI器件,部分IIC器件。2.仿真處理器及其外圍電路,可以仿真51系列、AVR、PIC、ARM、等常用主流單片機(jī)[11]。Keil軟件介紹KeilC51是美國(guó)KeilSoftware公司出品的51系列兼容單片機(jī)C語言軟件開發(fā)系統(tǒng),與匯編相比,C語言在功能上、結(jié)構(gòu)性、可讀性、可維護(hù)性上有明顯的優(yōu)勢(shì),因而易學(xué)易用。Keil提供了包括C編譯器、宏匯編、連接器、庫管理和一個(gè)功能強(qiáng)大的仿真調(diào)試器等在內(nèi)的完整開發(fā)方案,通過一個(gè)集成開發(fā)環(huán)境(uVision)將這些部分組合在一起。運(yùn)行Keil軟件需要WIN98、NT、WIN2000、WINXP等操作系統(tǒng)。如果你使用C語言編程,那么Keil幾乎就是你的不二之選,即使不使用C語言而僅用匯編語言編程,其方便易用的集成環(huán)境、強(qiáng)大的軟件仿真調(diào)試工具也會(huì)令你事半功倍。Keil的主界面如圖4.1所示圖4.1keil主界面Keil使用說明:?jiǎn)?dòng)Keil建立一個(gè)工程選擇工程保存位置選擇單片機(jī)(MCU)型號(hào)Keil彈出對(duì)話框詢問是否將初始化代碼一起加入工程建立.c文件將.c文件添加到工程開始編寫程序?qū)懲瓿绦蚝螅c(diǎn)“編譯”“鏈接”編譯成功后,生成HEX文件,將生成的HEX裝載到仿真單片機(jī)完成相應(yīng)的功能[12]。主要程序設(shè)計(jì)流程該系統(tǒng)軟件采用C語言設(shè)計(jì),系統(tǒng)的軟件設(shè)計(jì)方法與硬件設(shè)計(jì)相對(duì)應(yīng),在程序設(shè)計(jì)中采用模塊化設(shè)計(jì)思想,能使程序可讀性加強(qiáng),而且編寫時(shí)很方便,將要實(shí)現(xiàn)的功能分成幾部分,由于某些功能使用不只一次,將它編成一個(gè)子程序既可隨時(shí)多次調(diào)用,修改時(shí)也不會(huì)影響其他程序。整個(gè)軟件系統(tǒng)采用C51編程,主要實(shí)現(xiàn)以下功能:LED的驅(qū)動(dòng);按鍵的識(shí)別;揚(yáng)聲器的發(fā)聲;16X16點(diǎn)陣;電子禮花器的設(shè)計(jì)流程如圖4.2所示。開始開始初始化標(biāo)志位蜂鳴器播放蜂鳴器子程序按鍵子程序LED點(diǎn)陣子程序LED點(diǎn)陣初始化蜂鳴器初始化圖4.2電子禮花器設(shè)計(jì)流程部分源程序4.3.1按鍵部分源程序unsignedcharKey_Scan(){ unsignedcharkeyValue=0,i;//保存鍵值 //--檢測(cè)按鍵1--// if(GPIO_KEY!=0xFF) //檢測(cè)按鍵K1是否按下 { delay(10); //消除抖動(dòng) if(GPIO_KEY!=0xFF) //再次檢測(cè)按鍵是否按下 { keyValue=GPIO_KEY; i=0; while((i<50)&&(GPIO_KEY!=0xFF)) //檢測(cè)按鍵是否松開 { delay(10); i++; } } } returnkeyValue;//將讀取到鍵值的值返回}4.3.2聲音播放部分源程序voidsong(){unsignedcharp,m;//m為頻率常數(shù)變量unsignedchari=0;TMOD&=0x0f;TMOD|=0x01;TH0=0xd8;TL0=0xef;IE=0x82; play:while(1){ a:p=music_tab[i];if(p==0x00){i=0,delayms(1000);gotoplay;}//如果碰到結(jié)束符,延時(shí)1秒,回到開始再來一遍elseif(p==0xff){i=i+1;delayms(100),TR0=0;gotoa;}//若碰到休止符,延時(shí)100ms,繼續(xù)取下一音符else{m=music_tab[i++],n=music_tab[i++];}//取頻率常數(shù)和節(jié)拍常數(shù)TR0=1;//開定時(shí)器1while(n!=0)beep=~beep,delay1(m);//等待節(jié)拍完成,通過P1口輸出音頻TR0=0;//關(guān)定時(shí)器1 } }4.3.3延時(shí)子函數(shù)源程序voiddelay(uintdt){uinti;ucharbt;for(i=0;i<dt;i++)for(bt=0;bt<200;bt++);}Proteus仿真如圖4.3為系統(tǒng)仿真總圖。為了更好地對(duì)小型電子禮花器進(jìn)行功能控制,在這里運(yùn)用Proteus仿真軟件實(shí)現(xiàn)單片機(jī)STC89C52RC對(duì)各模塊控制的模擬運(yùn)行。圖4.3系統(tǒng)仿真總圖下面是對(duì)各部分功能仿真過程的詳細(xì)介紹:如圖4.4所示為“陜”的仿真圖。圖4.4“陜”的仿真圖源程序voidBmp1(){ uchari,k; P2=0; beep=1; delay(100); beep=0; for(k=0;k<1;k++){ for(i=0;i<DELAYNUM;i++){display(Bmp[k]);}}}取表代碼{0x02,0xF2,0x02,0x12,0x02,0x16,0x3F,0x8A,0x02,0x82,0x12,0x42,0x0A,0x22,0x02,0x12,0x7F,0xEA,0x06,0x12,0x06,0x1E,0x08,0x00,0x08,0x0A,0x10,0x46,0x20,0x8A,0x40,0x12},//陜?nèi)鐖D4.5所示為圖形的仿真圖圖4.5“?”的仿真圖源程序voidBmp2(){uchari,k; P2=0; beep=1; delay(100); beep=0; for(k=6;k<7;k++){ for(i=0;i<DELAYNUM;i++){display(Bmp[k]); }}}取表代碼{0x00,0x10,0x01,0x40,0x00,0x00,0x02,0x80,0x00,0x00,0x04,0x00,0x10,0x00,0x40,0x00,0x10,0x80,0x04,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x01,0x40,0x00,0x20,0x00,0x04},//?如圖4.6所示為花型的仿真圖。圖4.6“愛心”的仿真圖源程序voidBmp3(){uchari,k;P2=0; beep=1; delay(100); beep=0; for(k=9;k<10;k++){ for(i=0;i<DELAYNUM;i++){display(Bmp[k]); }}}取表代碼{0x00,0x08,0x38,0x10,0x44,0x20,0x42,0x40,0x41,0x80,0x40,0x00,0x40,0x00,0x40,0x00,0x20,0x84,0x10,0x44,0x08,0x38,0x04,0x00,0x02,0x04,0x01,0x04,0x00,0x04,0x00,0x04},//愛心循環(huán)顯示時(shí)的源程序。voidxunhuan(){uchari,k; P2=0;for(k=0;k<10;k++){beep=1; delay(100); beep=0; for(i=0;i<DELAYNUM;i++){display(Bmp[k]); }}}系統(tǒng)硬件安裝與調(diào)試硬件安裝硬件部分主要通過萬用板電路焊接將各個(gè)部分拼接在一起,其組成有控制模塊、發(fā)聲模塊、發(fā)光模塊、按鍵模塊。在焊接過程中,由于焊接工作太多,線路太多,且使用線路過細(xì),容易斷裂導(dǎo)致整體線路接觸不良經(jīng)常出現(xiàn)短路、斷路等問題,遂再復(fù)查過程中更換掉之前焊接使用的細(xì)線,換用粗線,這次不僅線路的實(shí)用性得到了大大提升,粗線也提供了一定的支撐作用,使整體線路更加穩(wěn)固。但LED點(diǎn)陣發(fā)光模塊依舊存在顯示亂碼問題無法實(shí)現(xiàn)顯示花型,顯示亮度太弱,經(jīng)過使用萬用表對(duì)電路進(jìn)行檢測(cè)并且積極與同學(xué)和老師探討,初步排除電路焊接問題。經(jīng)過再三的檢查,最終發(fā)現(xiàn)是因?yàn)殡娐吩O(shè)計(jì)的時(shí)候,LED發(fā)光模塊的上拉電阻的阻值為220Ω,而我焊接的時(shí)候焊接了1KΩ的電阻,因?yàn)殡娮杼?,?dǎo)致LED倆端的電壓太低,LED的驅(qū)動(dòng)電壓不夠,所以LED發(fā)光很微弱,無法正常顯示,發(fā)現(xiàn)問題后,我就把LED倆端的電阻拆除,LED發(fā)光模塊可以正常的點(diǎn)亮。LED可以點(diǎn)亮的時(shí)候,我就結(jié)合軟件程序?qū)﹄娐愤M(jìn)行了測(cè)試,結(jié)果LED顯示出現(xiàn)了亂碼,經(jīng)過再三檢查,初步排除了軟件程序的問題,再一次對(duì)電路進(jìn)行了檢查沒有發(fā)現(xiàn)問題,所以確定是芯片的問題,更換了芯片之后,LED點(diǎn)陣可以正常顯示字符和花型。調(diào)試調(diào)試分為硬件調(diào)試和軟件調(diào)試。硬件調(diào)試主要是檢測(cè)硬件電路是否有短路、斷路、虛焊等。單片機(jī)的顯示電路、鍵盤電路、揚(yáng)聲器電路是本次設(shè)計(jì)的主要硬件電路。在搭接實(shí)物之前要檢查各器件的性能是否符合要求。如導(dǎo)線是否導(dǎo)通,芯片是否性能完好等。還有通過編制一些小的調(diào)試程序分別對(duì)相應(yīng)各硬件單元電路的功能進(jìn)行檢查。其次,進(jìn)行軟件的調(diào)試。先驗(yàn)證子程序的正確性,再將這些子程序連接起來進(jìn)行整體的調(diào)試。逐漸的發(fā)現(xiàn)錯(cuò)誤并改正錯(cuò)誤。最后進(jìn)行軟硬件結(jié)合調(diào)試。檢查硬件電路與軟件編程是否匹配。第一部分進(jìn)行顯示電路的調(diào)試,觀察LED的顯示。檢查屏幕畫面,以及能否正確的顯示。在調(diào)試過程中有時(shí)候出現(xiàn)了亂碼,通過不斷的調(diào)整直到能夠清晰準(zhǔn)確顯示為止。仿真的時(shí)候LED模塊的掃描方式為列掃描,而我又沒有弄清楚我的LED模塊的具體掃描方式,所以LED顯示模塊一直出現(xiàn)亂碼的問題,最后我經(jīng)過看資料,一個(gè)一個(gè)的測(cè)試,終于了解了我自己的LED顯示模塊的具體掃描方式為行掃描方式,遂對(duì)程序進(jìn)行了多次的修改,測(cè)試。最終終于可以顯示正常的漢字和各種花型。第二部分對(duì)電路進(jìn)行整體的調(diào)試。接好整體的硬件電路,并且配合編好的軟件程序運(yùn)行,在調(diào)試中進(jìn)一步的完善系統(tǒng)的設(shè)計(jì)。功能展示通過對(duì)電路不斷的調(diào)試,本設(shè)計(jì)基本符合設(shè)計(jì)任務(wù)的要求,完成了任務(wù)的部分要求,通過按鍵的控制,可以獨(dú)立的顯示漢字,圖形和花型,也可以通過按鍵的控制,完成自動(dòng)循環(huán)顯示漢字,圖形和花型。本設(shè)計(jì)可以通過按鍵來控制,用蜂鳴器來播放音樂。以下是對(duì)顯示部分的功能展示當(dāng)按下按鍵K1,K2,K3時(shí),LED點(diǎn)陣可以分別顯示漢字“陜”,圖形“△”,和花型“愛心”;當(dāng)按下按鍵K4時(shí),LED點(diǎn)陣可以連續(xù)顯示“陜”“西”“理”“工”“學(xué)”“院”“△”“?”“愛心”“花朵”;當(dāng)按下按鍵K5時(shí),蜂鳴器可以播放音樂。顯示各種漢字時(shí)的圖片如圖5.1,圖5.2,圖5.3,圖5.4,圖5.5,圖5.6所示。當(dāng)按下按鍵K1時(shí),LED點(diǎn)陣顯示“陜”時(shí)的圖片如圖5.1所示,當(dāng)按下K4連續(xù)顯示時(shí),顯示“西”時(shí)的圖片如圖5.2所示。圖5.1顯示“陜”圖5.2顯示“西”當(dāng)按下K4連續(xù)顯示時(shí),顯示“理”時(shí)的圖片如圖5.3所示,顯示“工”時(shí)的圖片如圖5.4所示。圖5.3顯示“理”圖5.4顯示“工”當(dāng)按下K4連續(xù)顯示時(shí),顯示“學(xué)”時(shí)的圖片如圖5.5所示,顯示“院”時(shí)的圖片如圖5.6所示。圖5.5顯示“學(xué)”圖5.6顯示“院”顯示各種圖型時(shí)的圖片如圖5.7,圖5.8所示。當(dāng)按下按鍵K2時(shí),LED點(diǎn)陣顯示“△”時(shí)的圖片如圖5.7所示,當(dāng)按下K4連續(xù)顯示時(shí),LED點(diǎn)陣顯示“?”時(shí),如圖5.8所示。圖5.7顯示“△”圖5.8顯示”?”顯示各種花型時(shí)的圖片如圖5.9,圖5.10所示。當(dāng)按下按鍵K3時(shí),LED點(diǎn)陣顯示“花朵”時(shí)的圖片如圖5.9所示,當(dāng)按下K4連續(xù)顯示時(shí),LED點(diǎn)陣顯示“愛心”時(shí),如圖5.10所示。圖5.9顯示“花朵”圖5.10顯示“愛心”總結(jié)論文首先對(duì)本設(shè)計(jì)作了簡(jiǎn)要描述,介紹了國(guó)內(nèi)外電子禮花器的發(fā)展動(dòng)態(tài)以及課題的研究意義,隨后提出了不同的設(shè)計(jì)方案,經(jīng)過論證最后確定該設(shè)計(jì)采用單片機(jī)控制模塊、發(fā)聲模塊、顯示模塊、按鍵模塊、共四個(gè)模塊組成,然后對(duì)整個(gè)電路進(jìn)行電路仿真,得到的仿真結(jié)果說明了每個(gè)子模塊都能夠完成相應(yīng)功能。給出了芯片的工作原理以及版圖,子模塊的工作原理,然后把各個(gè)子模塊搭建連接到整體電路中并進(jìn)行模擬仿真,得到的仿真結(jié)果表明了電路能夠完成基本功能接著分別從硬件系統(tǒng)和軟件系統(tǒng)兩方面對(duì)基于單片機(jī)的小型電子聲光禮花器設(shè)計(jì)作了詳細(xì)論述,另外還簡(jiǎn)要介紹了一下系統(tǒng)的調(diào)試。在整個(gè)設(shè)計(jì)過程中,硬件方面主要設(shè)計(jì)了STC89C52RC單片機(jī)的最小系統(tǒng)、LED顯示電路、蜂鳴器發(fā)聲電路;軟件方面借助各個(gè)渠道的資料,主要設(shè)計(jì)了延時(shí)程序、字符顯示程序、唱歌程序;系統(tǒng)部分電路集成在一塊PCB板上,使電路看起來簡(jiǎn)單美觀。分步調(diào)試時(shí)顯示字符,數(shù)字,字母,集中調(diào)試以達(dá)到預(yù)期效果,但是由于沒有采用PCB制線,導(dǎo)致焊接完成后由于線路過多導(dǎo)致電路部分功能無法正常運(yùn)行,再就是線路過于繁瑣直接導(dǎo)致在復(fù)查時(shí)不易進(jìn)行,但經(jīng)過多次的反復(fù)測(cè)試與分析,并且經(jīng)過多次對(duì)電路的原理及功能復(fù)查使得對(duì)整體電路更加熟悉,提高了設(shè)計(jì)能力以及對(duì)電路的分析能力,在軟件的編程方面得到提高,編程能力得到加強(qiáng),并且鞏固了所學(xué)的知識(shí)。此電子聲光禮花器可以模擬禮花燃放裝置,達(dá)到聲型兼?zhèn)涞男Ч?,給人們?cè)诎踩?、環(huán)保的環(huán)境中帶來輕松愉快的氛圍。電路結(jié)構(gòu)新穎、元件不多、調(diào)試容易,適合自制。也可供小型企業(yè)工程技術(shù)人員開放設(shè)計(jì)參考。該裝置可用于家庭慶典、朋友聚會(huì)、聯(lián)歡晚會(huì)、兒童玩具及一些趣味性等場(chǎng)所。顯示直觀、功能多樣、電路簡(jiǎn)潔、成本低廉等諸多優(yōu)點(diǎn),符合電子儀器儀表的發(fā)展趨勢(shì),具有廣闊的市場(chǎng)前景。本論文采用了有關(guān)單片機(jī)的電路,利用程序來控制一些輸出現(xiàn)象,視覺上的效果好。但是由于課題的要求以及作者時(shí)間和水平的有限,無論是對(duì)各種芯片工作原理、版圖還是整體電路的設(shè)計(jì),都沒有進(jìn)行深層級(jí)的研究,一些細(xì)節(jié)問題也還沒有得到很好的解決方式,還需要進(jìn)一步修改和完善。

致謝首先我非常感謝院領(lǐng)導(dǎo)對(duì)我們畢業(yè)生在畢業(yè)設(shè)計(jì)過程中的支持與幫助。其次我要特別感謝帥老師淵博的專業(yè)知識(shí),嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,精益求精的工作作風(fēng),誨人不倦的高尚師德,嚴(yán)于律己、寬以待人的崇高風(fēng)范,樸實(shí)無法、平易近人的人格魅力。在此,我衷心感謝帥老師給予我的幫助和教育。謝謝您!最后我要感謝我的同學(xué)們,在編寫和調(diào)試過程遇到困難時(shí),正是由于同學(xué)們的幫助我才能順利的克服困難,我畢業(yè)設(shè)計(jì)的完成離不開同學(xué)們的幫助,在此,我真誠(chéng)地感謝他們。在大學(xué)四年的學(xué)習(xí)生活中,還得到了許多領(lǐng)導(dǎo)和老師的熱情關(guān)心和幫助,在此,向所有關(guān)心和幫助過我的領(lǐng)導(dǎo)、老師、同學(xué)和朋友們表示由衷的謝意!參考文獻(xiàn)[1]董建國(guó).一種環(huán)保型禮花彈殼的設(shè)計(jì)與制造研究[D].長(zhǎng)沙:中南大學(xué).2004[2]潘言全.多路電器遙控器的研究[J].黑龍江科技信息,2014,(16):78.[3]張瑞玲.單片機(jī)原理與應(yīng)用[M].西北工業(yè)大學(xué)出版社,2010年12月[4]李成祥.熱交換式農(nóng)業(yè)大棚溫濕度自動(dòng)控制系統(tǒng)[D].青島:中國(guó)海洋大學(xué).2012[5]高葵.基于SENSIRIONSHT系列傳感器的分布式溫濕度監(jiān)測(cè)系統(tǒng)[D].青島:山東科技大學(xué).2007[6]金柱.6X16點(diǎn)陣LED室內(nèi)電子顯示屏的設(shè)計(jì)與應(yīng)用[J].山東工業(yè)技術(shù),2014,5[7]陳淑潔,李建領(lǐng).C51單片機(jī)實(shí)驗(yàn)系統(tǒng)的自制及應(yīng)用實(shí)踐[J].實(shí)驗(yàn)室科學(xué),2009,(3):100-104.[8]朱軍.基于Proteus的單片機(jī)仿真實(shí)驗(yàn)[J].計(jì)算機(jī)光盤軟件與應(yīng)用,2010,12[9]閻石.數(shù)字電子技術(shù)基礎(chǔ)[M].北京:清華大學(xué)出版社,2006[10]廣州市風(fēng)標(biāo)電子技術(shù)有限公司.Proteus--電類專業(yè)教學(xué)實(shí)驗(yàn)與電子產(chǎn)品開發(fā)的最佳平臺(tái)[J].電子技術(shù)應(yīng)用,2009,35(10):30.

[11]謝維成,楊加國(guó).單片機(jī)與案例與應(yīng)用及C51程序設(shè)計(jì)[M].北京:清華大學(xué)出版社,2006

[12]張毅剛.MCS-51單片機(jī)應(yīng)用系統(tǒng)[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,1997[13]華成英,童詩白.模擬電子技術(shù)基礎(chǔ)-4版[M].北京:高等教育出版社,2006[14]ThomasL.Floyd,DavidBuchla.模擬電子技術(shù)基礎(chǔ)(第2版影印版)(美)[M].高等教育出版社,2004[15]U.TietzeCh.Schenk.ElectronicCircuits.HandbookforDesignandApplication,Berlin[M],NewYouk:Springer-Verlag,2005[16]楊學(xué)昭,王東云,楊雪昭.單片機(jī)原理接口技術(shù)及應(yīng)用第一版[M].西安:西安電子科技大學(xué)出版社,2009附錄A外文文獻(xiàn)Progress

in

ComputersPrestige

Lecture

delivered

to

IEE,

Cambridge,

on

5

February

2009

Maurice

Wilkes

The

first

stored

program

computers

began

to

work

around

1950.

The

one

we

built

in

Cambridge,

the

EDSAC

was

first

used

in

the

summer

of

1949.

These

early

experimental

computers

were

built

by

people

like

myself

with

varying

backgrounds.

We

all

had

extensive

experience

in

electronic

engineering

and

were

confident

that

that

experience

would

stand

us

in

good

stead.

This

proved

true,

although

we

had

some

new

things

to

learn.

The

most

important

of

these

was

that

transients

must

be

treated

correctly;

what

would

cause

a

harmless

flash

on

the

screen

of

a

television

set

could

lead

to

a

serious

error

in

a

computer.

As

far

as

computing

circuits

were

concerned,

we

found

ourselves

with

an

embarass

de

richess.

For

example,

we

could

use

vacuum

tube

diodes

for

gates

as

we

did

in

the

EDSAC

or

pentodes

with

control

signals

on

both

grids,

a

system

widely

used

elsewhere.

This

sort

of

choice

persisted

and

the

term

families

of

logic

came

into

use.

Those

who

have

worked

in

the

computer

field

will

remember

TTL,

ECL

and

CMOS.

Of

these,

CMOS

has

now

become

dominant.

In

those

early

years,

the

IEE

was

still

dominated

by

power

engineering

and

we

had

to

fight

a

number

of

major

battles

in

order

to

get

radio

engineering

along

with

the

rapidly

developing

subject

of

electronics.dubbed

in

the

IEE

light

current

electrical

perly

recognised

as

an

activity

in

its

own

right.

I

remember

that

we

had

some

difficulty

in

organising

a

conference

because

the

power

engineers’

ways

of

doing

things

were

not

our

ways.

A

minor

source

of

irritation

was

that

all

IEE

published

papers

were

expected

to

start

with

a

lengthy

statement

of

earlier

practice,

something

difficult

to

do

when

there

was

no

earlier

practice

Consolidation

in

the

1960s

By

the

late

50s

or

early

1960s,

the

heroic

pioneering

stage

was

over

and

the

computer

field

was

starting

up

in

real

earnest.

The

number

of

computers

in

the

world

had

increased

and

they

were

much

more

reliable

than

the

very

early

ones

.

To

those

years

we

can

ascribe

the

first

steps

in

high

level

languages

and

the

firstoperating

systems.

Experimental

time-sharing

was

beginning,

and

ultimately

computer

graphics

was

to

come

along.

Above

all,

transistors

began

to

replace

vacuum

tubes.

This

change

presented

a

formidable

challenge

to

the

engineers

of

the

day.

They

had

to

forget

what

they

knew

about

circuits

and

start

again.

It

can

only

be

said

that

they

measured

up

superbly

well

to

the

challenge

and

that

the

change

could

not

have

gone

more

smoothly.

Soon

it

was

found

possible

to

put

more

than

one

transistor

on

the

same

bit

of

silicon,

and

this

was

the

beginning

of

integrated

circuits.

As

time

went

on,

a

sufficient

level

of

integration

was

reached

for

one

chip

to

accommodate

enough

transistors

for

a

small

number

of

gates

or

flip

flops.

This

led

to

a

range

of

chips

known

as

the

7400

series.

The

gates

and

flip

flops

were

independent

of

one

another

and

each

had

its

own

pins.

They

could

be

connected

by

off-chip

wiring

to

make

a

computer

or

anything

else.

These

chips

made

a

new

kind

of

computer

possible.

It

was

called

a

minicomputer.

It

was

something

less

that

a

mainframe,

but

still

very

powerful,

and

much

more

affordable.

Instead

of

having

one

expensive

mainframe

for

the

whole

organisation,

a

business

or

a

university

was

able

to

have

a

minicomputer

for

each

major

department.

Before

long

minicomputers

began

to

spread

and

become

more

powerful.

The

world

was

hungry

for

computing

power

and

it

had

been

very

frustrating

for

industry

not

to

be

able

to

supply

it

on

the

scale

required

and

at

a

reasonable

cost.

Minicomputers

transformed

the

situation.

The

fall

in

the

cost

of

computing

did

not

start

with

the

minicomputer;

it

had

always

been

that

way.

This

was

what

I

meant

when

I

referred

in

my

abstract

to

inflation

in

the

computer

industry

‘going

the

other

way’.

As

time

goes

on

people

get

more

for

their

money,

not

less.

Research

in

Computer

Hardware.

The

time

that

I

am

describing

was

a

wonderful

one

for

research

in

computer

hardware.

The

user

of

the

7400

series

could

work

at

the

gate

and

flip-flop

level

and

yet

the

overall

level

of

integration

was

sufficient

to

give

a

degree

of

reliability

far

above

that

of

discreet

transistors.

The

researcher,

in

a

university

or

elsewhere,

could

build

any

digital

device

that

a

fertile

imagination

could

conjure

up.

In

the

Computer

Laboratory

we

built

the

Cambridge

CAP,

a

full-scale

minicomputer

with

fancy

capability

logic.The

7400

series

was

still

going

strong

in

the

mid

1970s

and

was

used

for

the

Cambridge

Ring,

a

pioneering

wide-band

local

area

network.

Publication

of

the

design

study

for

the

Ring

came

just

before

the

announcement

of

the

Ethernet.

Until

these

two

systems

appeared,

users

had

mostly

been

content

with

teletype-based

local

area

networks.

Rings

need

high

reliability

because,

as

the

pulses

go

repeatedly

round

the

ring,

they

must

be

continually

amplified

and

regenerated.

It

was

the

high

reliability

provided

by

the

7400

series

of

chips

that

gave

us

the

courage

needed

to

embark

on

the

project

for

the

Cambridge

Ring.

The

RISC

Movement

and

Its

Aftermath

Early

computers

had

simple

instruction

sets.

As

time

went

on

designers

of

commercially

available

machines

added

additional

features

which

they

thought

would

improve

performance.

Few

comparative

measurements

were

done

and

on

the

whole

the

choice

of

features

depended

upon

the

designer’s

intuition.

In

1980,

the

RISC

movement

that

was

to

change

all

this

broke

on

the

world.

The

movement

opened

with

a

paper

by

Patterson

and

Ditzel

entitled

The

Case

for

the

Reduced

Instructions

Set

Computer.

Apart

from

leading

to

a

striking

acronym,

this

title

conveys

little

of

the

insights

into

instruction

set

design

which

went

with

the

RISC

movement,

in

particular

the

way

it

facilitated

pipelining,

a

system

whereby

several

instructions

may

be

in

different

stages

of

execution

within

the

processor

at

the

same

time.

Pipelining

was

not

new,

but

it

was

new

for

small

computers

The

RISC

movement

benefited

greatly

from

methods

which

had

recently

become

available

for

estimating

the

performance

to

be

expected

from

a

computer

design

without

actually

implementing

it.

I

refer

to

the

use

of

a

powerful

existing

computer

to

simulate

the

new

design.

By

the

use

of

simulation,

RISC

advocates

were

able

to

predict

with

some

confidence

that

a

good

RISC

design

would

be

able

to

out-perform

the

best

conventional

computers

using

the

same

circuit

technology.

This

prediction

was

ultimately

born

out

in

practice.

Simulation

made

rapid

progress

and

soon

came

into

universal

use

by

computer

designers.

In

consequence,

computer

design

has

become

more

of

a

science

and

less

of

an

art.

Today,

designers

expect

to

have

a

roomful

of,

computers

available

to

do

their

simulations,

not

just

one.

They

refer

to

such

a

roomful

by

the

attractive

name

of

computer

farm.

The

x86

Instruction

SetLittle

is

now

heard

of

pre-RISC

instruction

sets

with

one

major

exception,

namely

that

of

the

Intel

8086

and

its

progeny,

collectively

referred

to

as

x86.

This

has

become

the

dominant

instruction

set

and

the

RISC

instruction

sets

that

originally

had

a

considerable

measure

of

success

are

having

to

put

up

a

hard

fight

for

survival.

This

dominance

of

x86

disappoints

people

like

myself

who

come

from

the

research

wings.both

academic

and

industrial.of

the

computer

field.

No

doubt,

business

considerations

have

a

lot

to

do

with

the

survival

of

x86,

but

there

are

other

reasons

as

well.

However

much

we

research

oriented

people

would

like

to

think

otherwise.

high

level

languages

have

not

yet

eliminated

the

use

of

machine

code

altogether.

We

need

to

keep

reminding

ourselves

that

there

is

much

to

be

said

for

strict

binary

compatibility

with

previous

usage

when

that

can

be

attained.

Nevertheless,

things

might

have

been

different

if

Intel’s

major

attempt

to

produce

a

good

RISC

chip

had

been

more

successful.

I

am

referring

to

the

i860

(not

the

i960,

which

was

something

different).

In

many

ways

the

i860

was

an

excellent

chip,

but

its

software

interface

did

not

fit

it

to

be

used

in

a

workstation.

There

is

an

interesting

sting

in

the

tail

of

this

apparently

easy

triumph

of

the

x86

instruction

set.

It

proved

impossible

to

match

the

steadily

increasing

speed

of

RISC

processors

by

direct

implementation

of

the

x86

instruction

set

as

had

been

done

in

the

past.

Instead,

designers

took

a

leaf

out

of

the

RISC

book;

although

it

is

not

obvious,

on

the

surface,

a

modern

x86

processor

chip

contains

hidden

within

it

a

RISC-style

processor

with

its

own

internal

RISC

coding.

The

incoming

x86

code

is,

after

suitable

massaging,

converted

into

this

internal

code

and

handed

over

to

the

RISC

processor

where

the

critical

execution

is

performed.

In

this

summing

up

of

the

RISC

movem

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論