




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某高校進(jìn)行自主招生,先從報名者中篩選出400人參加筆試,再按筆試成績擇優(yōu)選出100人參加面試.現(xiàn)隨機(jī)抽取了24名筆試者的成績,統(tǒng)計結(jié)果如下表所示.分?jǐn)?shù)段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人數(shù)234951據(jù)此估計允許參加面試的分?jǐn)?shù)線大約是()A.90 B.85C.80 D.752.某中學(xué)高一年級甲班有7名學(xué)生,乙班有8名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績的中位數(shù)是82,若從成績在的學(xué)生中隨機(jī)抽取兩名學(xué)生,則兩名學(xué)生的成績都高于82分的概率為()A. B. C. D.3.執(zhí)行如下圖所示的程序框圖,若輸出的,則輸入的的值為()A. B. C. D.4.在中,角,,所對的邊分別為,,,若,,則等于()A.1 B.2 C. D.45.甲、乙兩個不透明的袋中各有5個僅顏色不同的球,其中甲袋中有3個紅球,2個白球,乙袋中有2個紅球,3個白球,現(xiàn)從兩袋中各隨機(jī)取一球,則兩球不同顏色的概率為()A. B. C. D.6.若角的頂點與坐標(biāo)原點重合,始邊與x軸的正半軸重合,終邊經(jīng)過點,則()A. B. C. D.7.“”是“、、”成等比數(shù)列的()條件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要8.已知函數(shù)f(x)=x,x≥0,|x2A.a(chǎn)<0 B.0<a<1 C.a(chǎn)>1 D.a(chǎn)≥19.若某市所中學(xué)參加中學(xué)生合唱比賽的得分用莖葉圖表示(如圖),其中莖為十位數(shù),葉為個位數(shù),則這組數(shù)據(jù)的中位數(shù)是()A.91 B.91.5C.92 D.92.510.已知為銳角,角的終邊過點,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的前n項和,則數(shù)列的通項公式是______.12.設(shè)不等式組所表示的平面區(qū)域為D.若直線與D有公共點,則實數(shù)a的取值范圍是_____________.13.設(shè)是公差不為0的等差數(shù)列,且成等比數(shù)列,則的前10項和________.14.已知的內(nèi)角、、的對邊分別為、、,若,,且的面積是,___________.15.已知直線過點,,則直線的傾斜角為______.16.半徑為的圓上,弧長為的弧所對圓心角的弧度數(shù)為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖:分組頻數(shù)頻率2440.120.05合計1(1)求出表中,及圖中的值;(2)若該校高三學(xué)生有240人,試估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù);(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.18.已知為常數(shù)且均不為零,數(shù)列的通項公式為并且成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)設(shè)是數(shù)列前項的和,求使得不等式成立的最小正整數(shù).19.已知動點到定點的距離與到定點的距離之比為.(1)求動點的軌跡的方程;(2)過點作軌跡的切線,求該切線的方程.20.如圖,是邊長為2的正三角形.若,平面,平面平面,,且.(1)求證:平面;(2)求證:平面平面.21.如圖,當(dāng)甲船位于處時獲悉,在其正東方向相距20海里的處有一艘漁船遇險等待營救.甲船立即前往救援,同時把消息告知在甲船的南偏西30°,相距10海里處的乙船,試問乙船應(yīng)朝北偏東多少度的方向沿直線前往處救援?(角度精確到1°,參考數(shù)據(jù):,)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)題意可從樣本中數(shù)據(jù)的頻率考慮,即按成績擇優(yōu)選擇頻率為的,根據(jù)題意得到所選的范圍后再求出對應(yīng)的分?jǐn)?shù).【詳解】由題意得,參加面試的頻率為,結(jié)合表中的數(shù)據(jù)可得,樣本中[80,90]的頻率為,由樣本估計總體知,分?jǐn)?shù)線大約為80分.故選C.【點睛】本題考查統(tǒng)計圖表的應(yīng)用,解題的關(guān)鍵是理解題意,同時還要正確掌握統(tǒng)計中的常用公式,屬于基礎(chǔ)題.2、D【解析】
計算得到,,再計算概率得到答案.【詳解】,解得;,解得;故.故選:.【點睛】本題考查了平均值,中位數(shù),概率的計算,意在考查學(xué)生的應(yīng)用能力.3、D【解析】由題意,當(dāng)輸入,則;;;,終止循環(huán),則輸出,所以,故選D.4、D【解析】
直接利用正弦定理得到,帶入化簡得到答案.【詳解】正弦定理:即:故選D【點睛】本題考查了正弦定理,意在考查學(xué)生的計算能力.5、D【解析】
現(xiàn)從兩袋中各隨機(jī)取一球,基本事件總數(shù),兩球不同顏色包含的基本事件個數(shù),由此能求出兩球不同顏色的概率.【詳解】甲、乙兩個不透明的袋中各有5個僅顏色不同的球,其中甲袋中有3個紅球、2個白球,乙袋中有2個紅球、3個白球,現(xiàn)從兩袋中各隨機(jī)取一球,基本事件總數(shù),兩球不同顏色包含的基本事件個數(shù),則兩球不同顏色的概率為.故選.【點睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.6、C【解析】
根據(jù)三角函數(shù)定義結(jié)合正弦的二倍角公式計算即可【詳解】由題意,∴,,.故選:C.【點睛】本題考查三角函數(shù)的定義,考查二倍角的正弦公式,掌握三角函數(shù)定義是解題關(guān)鍵.7、B【解析】
利用充分必要條件直接推理即可【詳解】若“、、”成等比數(shù)列,則;成立反之,若“”,如果a=b=G=0則、、”不成等比數(shù)列,故選B.【點睛】本題考查充分必要條件的判定,熟記等比數(shù)列的性質(zhì)是關(guān)鍵,是基礎(chǔ)題8、B【解析】
令g(x)=0得f(x)=a,再利用函數(shù)的圖像分析解答得到a的取值范圍.【詳解】令g(x)=0得f(x)=a,函數(shù)f(x)的圖像如圖所示,當(dāng)直線y=a在x軸和直線x=1之間時,函數(shù)y=f(x)的圖像與直線y=a有四個零點,所以0<a<1.故選:B【點睛】本題主要考查函數(shù)的圖像和性質(zhì),考查函數(shù)的零點問題,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.9、B【解析】試題分析:中位數(shù)為中間的一個數(shù)或兩個數(shù)的平均數(shù),所以中位數(shù)為考點:莖葉圖10、B【解析】
由題意利用任意角的三角函數(shù)的定義求得和,再利用同角三角函數(shù)的基本關(guān)系求得的值,再利用兩角差的余弦公式求得的值.【詳解】角的終邊過點,,又為銳角,由,可得故選B.【點睛】本題考查任意角的三角函數(shù)的定義,考查兩角差的余弦,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
時,,利用時,可得,最后驗證是否滿足上式,不滿足時候,要寫成分段函數(shù)的形式.【詳解】當(dāng)時,,當(dāng)時,=,又時,不適合,所以.【點睛】本題考查了由求,注意使用求時的條件是,所以求出后還要驗證適不適合,如果適合,要將兩種情況合成一種情況作答,如果不適合,要用分段函數(shù)的形式作答.屬于中檔題.12、【解析】
畫出不等式組所表示的平面區(qū)域,直線過定點,根據(jù)圖像確定直線斜率的取值范圍.【詳解】畫出不等式組所表示的平面區(qū)域如下圖所示,直線過定點,由圖可知,而,所以.故填:.【點睛】本小題主要考查不等式表示區(qū)域的畫法,考查直線過定點問題,考查直線斜率的取值范圍的求法,屬于基礎(chǔ)題.13、【解析】
利用等差數(shù)列的通項公式和等比數(shù)列的性質(zhì)求出公差,由此能求出【詳解】因為是公差不為0的等差數(shù)列,且成等比數(shù)列所以,即解得或(舍)所以故答案為:【點睛】本題考查等差數(shù)列前10項和的求法,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)合理運用.14、【解析】
利用同角三角函數(shù)計算出的值,利用三角形的面積公式和條件可求出、的值,再利用余弦定理求出的值.【詳解】,,,且的面積是,,,,,由余弦定理得,.故答案為.【點睛】本題考查利用余弦定理解三角形,同時也考查了同角三角函數(shù)的基本關(guān)系、三角形面積公式的應(yīng)用,考查運算求解能力,屬于中等題.15、【解析】
根據(jù)兩點求斜率的公式求得直線的斜率,然后求得直線的傾斜角.【詳解】依題意,故直線的傾斜角為.【點睛】本小題主要考查兩點求直線斜率的公式,考查直線斜率和傾斜角的對應(yīng)關(guān)系,屬于基礎(chǔ)題.16、【解析】
根據(jù)弧長公式即可求解.【詳解】由弧長公式可得故答案為:【點睛】本題主要考查了弧長公式的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);;;(2)60人.(3)【解析】
(1)根據(jù)頻率,頻數(shù)和樣本容量之間的關(guān)系即頻率等于頻數(shù)除以樣本容量,寫出算式,求出式子中的字母的值;(2)該校高三學(xué)生有240人,分組內(nèi)的頻率是0.25,估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為60人;(3)設(shè)在區(qū)間內(nèi)的人為,,,,在區(qū)間內(nèi)的人為,,寫出任選2人的所有基本事件,利用對立事件求得答案.【詳解】(1)由分組內(nèi)的頻數(shù)是10,頻率是0.25知,,∴.∵頻數(shù)之和為40,∴,,.∵是對應(yīng)分組的頻率與組距的商,∴;(2)因為該校高三學(xué)生有240人,分組內(nèi)的頻率是0.25,∴估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為60人.(3)這個樣本參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生共有人,設(shè)在區(qū)間內(nèi)的人為,,,,在區(qū)間內(nèi)的人為,.則任選2人共有,,,,,,,,,,,,,,15種情況,而兩人都在內(nèi)只能是一種,∴所求概率為.【點睛】本題以圖表為背景,考查從圖表中提取信息,同時在統(tǒng)計的基礎(chǔ)上,考查古典概型的計算,考查基本數(shù)據(jù)處理能力.18、(1);(2)【解析】
(1)由,可得,,,.根據(jù)、、成等差數(shù)列,、、成等比數(shù)列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分別利用等差數(shù)列與等比數(shù)列的求和公式即可得出.【詳解】(1),,,,.,,成等差數(shù)列,,,成等比數(shù)列.,,,,,.聯(lián)立解得:,.(2)由(1)可得:,,由,解得..【點睛】本題考查等差數(shù)列與等比數(shù)列的通項公式與求和公式及其性質(zhì)、分類討論方法、不等式的解法,考查推理能力與計算能力,屬于中檔題.19、(1),(2)或【解析】
(1)首先根據(jù)題意列出等式,再化簡即可得到軌跡方程.(2)首先根據(jù)題意設(shè)出切線方程,再利用圓心到切線的距離等于半徑即可求出切線方程.【詳解】(1)設(shè),有題知,,所以點的軌跡的方程:.(2)當(dāng)切線斜率不存在時,切線為圓心到的距離,舍去.當(dāng)切線斜率存在時,設(shè)切線方程為.圓心到切線的距離,解得:或.即切線方程為:或.【點睛】本題第一問考查了圓的軌跡方程,第二問考查了直線與圓的位置關(guān)系中的切線問題,屬于中檔題.20、(1)見解析;(2)見解析【解析】
(1)取的中點,連接,由平面平面,得平面,再證即可證明(2)證明平面,再根據(jù)面面垂直的判定定理從而進(jìn)行證明.【詳解】(1)取的中點,連接,因為,且,.所以,.又因為平面平面,所以平面,又平面,所以又因為平面,平面,所以平面.(2)連接,由(1)知,又,,所以四邊形是平行四邊形,所以.又是正三角形,為的中點,∴,因為平面平面,所以平面,所以平面.又平面,所以.因為,,所以平面.因為平面,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 種植蔬菜合同協(xié)議書
- 齒輪傳動考試題及答案
- 農(nóng)村房子開發(fā)合同協(xié)議書
- 事故處理合同協(xié)議書范本
- 天工合同協(xié)議書
- 股權(quán)合同協(xié)議書飯店
- 婚前協(xié)議書合同書
- 就業(yè)協(xié)議書與勞動合同的異同
- 木門簽訂合同協(xié)議書
- 保潔工合同協(xié)議書
- 初中英語學(xué)科教學(xué)的項目化教學(xué)課件
- 北京市海淀區(qū)中考自主招生考試物理試題
- 臺海局勢之我見課件
- 不良資產(chǎn)盡職調(diào)查清單
- 國開電大應(yīng)用寫作形考任務(wù)6答案
- 《歐洲西部》課件2
- 中小學(xué)文言文閱讀詳解基礎(chǔ)篇 56:《齊人攫金》
- 第十五屆運動會場館醫(yī)療保障工作方案
- 印染廠染色車間操作手冊培訓(xùn)教材
- 中醫(yī)正骨機(jī)器人的實體建模和仿真分析
- 《學(xué)弈》優(yōu)質(zhì)課教學(xué)課件
評論
0/150
提交評論