




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Availableonlineat
ProgressinNaturalScience18(2008)893–899
/locate/pnsc
Ashortestpathalgorithmformovingobjectsinspatial
networkdatabases
c
XiaolanYina,b,*,ZhimingDing,JingLi
a
a
TechnologyCenterofSoftwareEngineering,InstituteofSoftware,ChineseAcademyofScience,P.O.Box8718,Beijing100080,China
b
GraduateUniversity,ChineseAcademyofSciences,Beijing100049,China
TechnologyCenterofBasicSoftware,InstituteofSoftware,ChineseAcademyofSciences,Beijing100080,China
c
Received7January2008;receivedinrevisedform11January2008;accepted14January2008
Abstract
OneofthemostimportantkindsofqueriesinSpatialNetworkDatabases(SNDB)tosupportlocation-basedservices(LBS)isthe
shortestpathquery.Givenanobjectinanetwork,e.g.alocationofacaronaroadnetwork,andasetofobjectsofinterests,e.g.hotels,
gasstation,andcar,theshortestpathqueryreturnstheshortestpathfromthequeryobjecttointerestedobjects.Thestudiesofshortest
pathqueryhavetwokindsofways,onlineprocessingandpreprocessing.Thestudiesofpreprocessingsupposethattheinterestobjects
arestatic.Thispaperproposesashortestpathalgorithmwithasetofindexstructurestosupportthesituationofmovingobjects.This
algorithmcantransformadynamicproblemtoastaticproblem.Inthispaperwefocusonroadnetworks.However,ouralgorithmsdo
notuseanydomainspeci?cinformation,andthereforecanbeappliedtoanynetwork.Thisalgorithm’scomplexityisO(klogi),and
2
2
traditionalDijkstra’scomplexityisO((i+k)).
2008NationalNaturalScienceFoundationofChinaandChineseAcademyofSciences.PublishedbyElsevierLimitedandSciencein
ChinaPress.Allrightsreserved.
Keywords:Movingobject;Spatialnetworkdatabases;Shortestpathindex;Shortestpath
1.Introduction
[14–17].Thebestboundinprecomputationappearsin
[18].In[19–21],thesecond-bestalgorithmontheshortest
pathisstudied.Previousworkonexactalgorithmswith
preprocessingincludesthoseusinggeometricinformation
[22,23],hierarchicaldecomposition[24–26],thenotionof
reach[27],andA*searchcombinedwithlandmarkdis-
tances[28,29].In[30],themethodistocomputethebest
pathinatimeintervalaccordingtotherealtime.This
methodcansolvethedynamicchangeofthenetwork
andthemovingobjects,butitneedstoomanyresources
ineachcomputation.Therefore,thecomputationtimeis
toolongwhenthenetworkscaleisbiggeranditcannot
providethereal-timeresult.InRef.[31],itisdiscussed
howtore-computethepathquicklyifthenetworkstruc-
tureischangedwhentheshortestpathiscomputed.
Inthispaper,wepresentthealgorithminthetranspor-
tationnetwork,butouralgorithmdoesnotuseanyinfor-
mationrelatedtothenetworkenvironment.Therefore,the
Withcontinualgrowingofwirelesscommunicationand
developingofpositioningtechnology,toanswerhighlye?-
cientqueriesofmanymovingobjectsandthequeriesbased
onlocation-basedservices(LBS)isbecomingmoreandmore
important.Furthermore,theshortestpathqueryinSpatial
NetworkDatabaseisoneofthemostwidelyusedservices.
AftertheinitiativeworkofDijkstra,alotofresearches
usingmanymethodsandalgorithmstosolvethequestion
oftheshortestpathqueryhavebeenconducted[1–13].
Therearetwo?eldsintheresearchontheshortestpath
algorithm:onlinecomputationandprecomputation.
Onlinecomputationhasbeenaddressed,forexample,in
*
Correspondingauthor.Tel.:+861062661582635.
E-mailaddress:xlyin@(X.Yin).
1002-0071/$-seefrontmatter2008NationalNaturalScienceFoundationofChinaandChineseAcademyofSciences.PublishedbyElsevierLimited
andScienceinChinaPress.Allrightsreserved.
doi:10.1016/j.pnsc.2008.01.031
894
X.Yinetal./ProgressinNaturalScience18(2008)893–899
algorithmwouldbeabletobeusedinothernetwork
environments.
?rst.ThenetworkismodelizedtoadigraphG=(R,J,C),
inwhichJisagroupofvertices.Weassumethat(J,J)
i
j
Wenowdiscusssomeworkrelatedtoprecomputation
below.Therearetwocompositepartsinthesealgorithms:
preprocessalgorithmtocomputetheauxiliarydata,and
queryalgorithmtocomputetheshortestpathwiththeaux-
iliarydata.
isthesingledirectededgefromJtoJconnectingany
ij
twodi?erentpointsJandJinJ.Jisthestartingpoint
i
j
i
oftheedge,andJistheendingpointoftheedge.Theedge
j
doesnotpassanyotherverticesinJ(ifthedirectededge
passesanyothervertexdi?erentfromJandJ,wesuppose
i
j
Gutman[27]de?nedReachofavertex.Simplyput,
Reachofavertexisanumber.ThevalueofReachisbigger
whenthevertexisinthemiddleoftheshortestpath,other-
wisethevalueissmaller.Gutmanshowedhowtomodify
thepathfromtheorigintothedestinationusingReach
ofavertex(upperlimit)andthedistanceofavertex(lower
limit).HeusedEuclideandistanceaslowerlimit,andsaid
that(J,J)isanemptyset).ThenRstandsforthesetofall
ij
thesesingledirectededges,andeveryelement(J,J)inR
i
j
correspondstooneandonlyonesingledirectededge.C
isaweightedfunction,andeverydirectededgeinRcorre-
spondstoaweightofapositiverealnumber.
IntheabovedigraphG,thepathfromoriginedgeto
destinationedgep(u,v)consistsofagroupofedgeseries
(r,...,r),inwhichu=r,v=r,"i,r2R(06i6k1).
thatthee?ciencycouldbeimprovedbyusingthequery
basedonEuclideanA*.
0
k
0
k
i
Thestartingpointofristhesameastheendingpointof
i
GoldbergandHarrelson[28,29]raisedthatthee?ciency
couldbeimprovedbasedonthequeryofA*usingland-
markaslowerlimit.Therefore,theygavetheALT(A*
r
,andk+1isthenumberofedgesofpathp(u,v).A
i+1
pathcannotincludealoop,whichis"r,r2p(u,v)
i
j
(i<j),thenthestartingpointofrisnotthesameasthe
i
search,landmarks,andtriangleinequality)method.This
methodcanimprovethee?ciencyofReachalgorithm.
SandersandSchultes[24,25]gavetheHighwayHierar-
chy(HH)algorithm.Theydescribedthisalgorithminthe
undigraphandpresentedhowtoexpandthisalgorithm
tothedigraph.Therealizationandtheexperimentofthis
algorithmarebasedontheundigraph.Wethinkthatthis
algorithmwouldnotlosee?ciencyinthedigraph.Under
thisassumption,HHalgorithmhasthecomplexityofthe
fastestqueryspeed,lessusedmemoryandreasonable
preprocess.
Thereisdi?erentmotiveinReachalgorithmandHH
algorithm.Theformeroneistoreducetoashortestpath,
andthelatteroneistolimitthealgorithmintoasmaller
subgraphbyusinginnerhierarchialpaths.Evenso,there
isacorrelationbetweenthesetwoalgorithms.
endingpointofr.Theweightofthepathisthesumof
j
weightsofalledgesexceptoriginedgeanddestination
P
k1
edge,whichis
CerT.Ifthereexistsapathfromuto
i?2
i
v,wecansaythatvcanbereachedfromu.Thedistance
d(u,v)betweentheedgesuandvthatcanbereachedis
R
de?nedastheleastweightamongallthepathsbetween
thesetwoedges,otherwise,thedistanced(u,v)wouldbe
R
unlimited.Ifk=1or0,thedistanced(u,v)is0.Theshort-
R
estpathp(u,v)betweenedgesuandvisde?nedasthepath
R
withtheleastweight,ofwhichtheleastweight=d(u,v).
R
Basedontheabovede?nitionofthenetworkmodeliza-
tion,wecande?nesomedatatypestomodelizethemoving
objects.
AgraphpointGP(r,pos)standsforamovingobject,
wherer=(J,J)2R,andpos2[0,1]standsfortherelative
i
j
valueoftheposition(o?set)ofthemovingobjectonthe
Themethodsdescribedabovegavemanywaystosolve
thequeryoftheshortestpathinaspacialnetwork,butthe
destinationobjectsareallassumedmotionlessinthesemeth-
ods.Sofar,thereisnoe?ectivealgorithmforthecasethatthe
originandthedestinationaremoving,fortheoldqueryalgo-
rithmscannotbeusedformovingqueryobjects,especially
themovingdestinationobjects.However,thequeryofthe
shortestpathformovingdestinationisawidelyaskedser-
vice,soitisaproblemthatneedstobesolvedquickly.To
solvethisproblemweestablishedagroupofindexedstruc-
turestochangethecomputationoftheshortestpathbetween
twomovingpointsintothecomputationoftheshortestpath
betweentwomotionlesssides.Thecomputationspeedis
improved,andthecomputationcomplexityisreduced
greatly.Inthetransportationnetwork,likethatinthe
metropolisofBeijingandShanghai,theshortestpathcan
begivenoutinrealtimebyusingourmethod.
edge.Ifpos=0,themovingobjectisonthevertexofJi,
andifpos=1,itisonthevertexofJ.Wecanusedmgp
j
todigressivelystandforthemovingtrailofthemoving
n
i
?1
object.dmgpisaseriesanddmgp?eet;gp;vmTTwhere
i
i
i
tisthetimepoint,gpisthegraphpointtodescribethe
i
i
movingobjectatthetimeoft,vmisthevelocityofthe
i
i
movingobjectatthetimeoft,and(t,gp,vm)=lis
i
i
i
i
i
calledthemovingunitattheorderiofdmgp.Weassume
thatthemovingobjectmovesintheaveragevelocityof
thepathbetweentwomovingunits;therefore,thelocation
ofthemovingobjectcanbecomputedthrough
interpolation.
Theshortestpathbetweentwographpointsgp(r,pos)
1
1
1
andgp(r,pos)isde?nedasp(gp,gp)=p(r,r).
2
2
2
R
1
2
R
1
2
3.Theshortestpathalgorithm
Thenetworkaftertheabovemodelizationbecomesa
digraphwithweight,andthemovingobjectismodelized
toagraphpoint.Thegraphpointmovesinthedigraph.
Becauseofthemovementoftheobject,especiallythatof
thedestinationobject,thecomputationoftheshortestpath
2.Networkmodel
InSpatialNetworkDatabase,movingobjectsarelim-
itedbythenetwork,soweneedtomodelizethenetwork
X.Yinetal./ProgressinNaturalScience18(2008)893–899
895
betweenobjectsbecomesmorecomplex.Welowerthe
complexityofthecomputationbybuildingtheindexof
theshortestpathtochangeacontinuallydynamicproblem
toastaticproblem.
3.1.Indexstructure
3.1.1.Indexoftheshortestpath
Consideringthatthemovingobjectmovesinthenet-
work,andtheshortestpathbetweentwopointsinthenet-
workcanbechangedtotheshortestpathbetweentwo
edgeswherethetwopointsare,wecanchangethecompu-
tationproblemoftwomovingpointstothecomputation
problemofstaticedges.
Fig.1.Indexstructureofshortestpath.
First,theedgesofthemodelizedgraphcanbemapped
tothevertices,andtheverticescanbemappedtotheedges.
Second,runningDijkstraalgorithmafterntimesmodi-
?cationtogettheshortestpathamongallverticesinthe
changedgraph.Thealgorithmisasfollows:
1)Initialization.Thestartingpointcanbesetas:
od=0,pisempty;
s
s
oAllotherpoints:d=1,p=?;
i
i
oMarkthestartingpointass.Nowk=s,andall
otherpointsarenotmarked.
2)Checktheweightfromallmarkedpointktothe
unmarkedpointjthatdirectlyisconnectedtok,
andsetd=min[d,d+l],inwhichlistheweight
Fig.2.Indexstructureofmovingobjects.
timeDt,theshortestpathalgorithmfrompmtopk
(16k6n)isasfollows:
j
j
k
k
k
ofvertexk.Ifk=s,thenl=0.
k
3)Choosenextpoint.Fromtheunmarkedpoints,
Input:Originobjectp,destinationobjectp,andtime
m
k
choosethesmallestifromd,whered=min[d,all
Dt.
j
i
j
unmarkedpointj].Pointiischosenasthepointin
theshortestpath,andsetasmarked.
Output:Theshortestpath.
4)Findthepointbeforepointi.Findthepointj
amongthemarkedpointsasthepointbeforei,which
isconnecteddirectlytopointi,thenseti=j.
5)Markpointi.Ifallverticesaremarked,thealgorithm
isderivedcompletely.Otherwise,markk=i,and
turntostep2tocontinue.
1:i=1,j=n
2:l=[(i+j)/2]
3:Ifl=m,thenpmisfound.Thesearchis?nished.
Otherwise,changethesearchingcondition,continue
tosearch.
4:i=1,j=n
5:l=[(i+j)/2]
Finally,arrangealltheshortestpathaccordingtothe
orderofserialnumberofedges.Thedatastructureisillus-
tratedinFig.1.
6:Ifl=t+Dt,then?ndgp(r,pos)ofpatt+Dt.
0
m
m
m
m
0
Thesearchis?nished.Otherwise,changethesearch-
ingcondition,continuetosearch.
7:i=1,j=n
3.1.2.Indexofmovingobjects
8:l=[(i+j)/2]
Sincethemovingtrailsofthemovingobjectscanbe
describeddiscretely,wecanbuildtheindexonthemov-
ingtrailsofthemovingobjectstosearchthelocationof
movingobjects.Therefore,wearereadytochangethe
shortestpathbetweenthepointstotheshortestpath
betweentheedges.Theindexstructureisindicatedin
Fig.2.
9:Ifl=k,then?ndp.Thesearchis?nished.Other-
wise,changethesearchingcondition,continueto
search.
10:i=1,j=n
k
11:l=[(i+j)/2]
12:Ifl=t+Dt,then?ndgp(r,pos)ofpatt+Dt.
0
k
k
k
k
0
Thesearchis?nished.Otherwise,changethesearch-
ingcondition,continuetosearch.
3.2.Theshortestpathalgorithm
13:i=1,j=n
14:l=[(i+j)/2]
Initialtimeist.Therearenmovingobjects.Origin
objectispm(16m6n).Destinationobjectisp.After
k
15:Ifl=m,then?ndr.Thesearchis?nished.Otherwise,
changethesearchingcondition,continuetosearch.
0
m
896
X.Yinetal./ProgressinNaturalScience18(2008)893–899
16:i=1,j=n
17:l=[(i+j)/2]
18:Ifl=k,then?ndtheshortestpathbetweenrandr.
Thesearchis?nished.Otherwise,changethesearch-
ingcondition,thencontinuetosearch.
4.1.Experimentaldata
Toruntheexperiment,ourdataarethegraphsgener-
atedrandomly.Thegenerationruleisasfollows:
m
k
1)Thereareatmost5andatleast1directlyconnected
verticestoeveryvertex.Amongthem,1%verticesare
directlyconnectedto1or5vertices,respectively,5%
verticesaredirectlyconnectedto3vertices,andthe
rest93%verticesaredirectlyconnectedto4vertices.
2)Theweightofeachedgeisfrom1to10.Among
them,1%edgeshaveweight1or10,respectively,
5%edgeshaveweight2or9,respectively,8%edges
haveweight3or8,respectively,15%edgeshave
weight4or7,respectively,and21%edgeshave
weight5or6,respectively.
Accordingtowhatisdescribedabove,themainidea
ofthealgorithmistochangetheproblemofcomputing
theshortestpathbetweentwomovingpointstothe
problemofcomputingtheshortestpathbetweentwosta-
ticedges.Tochangethenetworktoadigraphthrough
themodelizationandchangeofthenetwork,itiseasy
tobuildtheindexforshortestpath.Buildingtheindex
ofshortestpathcanchangetheshortestpathbetween
twopointstotheshortestpathbetweentwoedges.The
continuousquerywouldbepossiblethroughtheinterpo-
lationcomputationonthelocationofthemovingobjects
aftertimeDt,throughmodelizingandtreatingdigres-
sivelythemovingobjects.
Thealgorithm?rstdeterminesthelocationofthemov-
ingobjectaftertimeDtthroughtheindexofthemoving
objects(1–12above).Next,itgetstheshortestpathof
theedgesbetweenthedestinationobjectandoriginobject,
throughsearchingtheshortestpathindexoftheedgewhere
theoriginobjectis(13–18above).
Fivegraphsweregeneratedrandomly.Theyarewith
1000verticesand3942edges,2000verticesand7862
edges,3000verticesand11,778edges,5000verticesand
19,634edges,and8000verticesand31,404edges,
respectively.
4.2.Experimentalquery
Werun?vegroupsofqueriesagainsteachgraphwith
di?erentmovingobjects,respectively.Theshortestpaths
3.3.Analysisofthecomputationcomplexity
arequeriedwithoriginobjectpand1,5,10,20,and50
0
Assumethatthereareivertex,nedgesandkinterest
movinginterestsobjects,andeachgroupisqueried100
times.Theoriginobjectandinterestsobjectsareselected
randomly.Ourmeasurementstandardistheaveragetime
ofeachquery.
objectsingraphG.Itwouldtake(logn)+1timesat
2
mosttocomputebyrunning1–6above,(logn)+1
2
timesatmosttocomputebyrunning7–12,and
(logn)+1timesatmosttocomputebyrunning13–
2
18.So,itwouldtake3(logn)+3timesatmosttocom-
2
4.3.Experimentalresult
putewithouralgorithm.Therefore,theestimationofthe
timecomplexityofouralgorithmisO(logn).Weassume
thatthereisatmostoneedgebetweentwovertices,then
TheexperimentalresultsareillustratedbyTable1and
Figs.3and4.
2
thereareatmost(n*(n1))/2edgesingraphG.The
IneachpartofFig.3,thedestinationobjectsarethe
samebutthenumberofthegraphnodesincrease.
IneachpartofFig.4,thenumberofthegraphnodesis
thesamebutthedestinationobjectsincreases.
FromFigs.3and4wecandrawthefollowing
conclusions:
First,obviously,wecanseethatwhenthedestination
objectsandgraphnodeschange,theresultofusingthe
shortestpathindexalgorithmisbetterthanthatofusing
directlyDijkstraalgorithm.
timecomplexityisO(logi)intermsofi.Thetimecom-
2
plexityisO(klogi)whenweneedto?ndtheshortest
2
pathbetweenoriginobjectandkinterestsobjects.If
weusetraditionalDijkstraalgorithm,13–18woulduse
thetraditionalalgorithm.Thedestinationobjectswould
beturnedintovertices,andafterthecomputationof
theshortestpathinDijkstraalgorithm,theestimation
2
ofthetimecomplexityisO((i+k)).Therefore,theesti-
mationofthetimecomplexityofouralgorithm
O(klogi)ismuchlessthanthatofDijkstraalgorithm
2
2
O((i+k)).Inthespacecomplexity,thespacecomplexity
2
oftheshortestpathindexisO(n),andthespacecom-
2
Table1
Thetimeofbuildingindex
plexityofmovingobjectindexisO(n).
Vertices
Time(s)
4.Analysisoftheexperiment
1000verticesgraph
2000verticesgraph
3000verticesgraph
4000verticesgraph
5000verticesgraph
14.5
44.6
81.3
185
Below,wewillcomparetheexperimentalresults
obtainedusingtheshortestpathindexandtheresultsusing
theshortestpathquerywithDijkstraalgorithm.
462.3
X.Yinetal./ProgressinNaturalScience18(2008)893–899
897
Fig.3.Thenumberofdestinationobjectschanged.
Second,inonesame?gure,asthenumberofthedesti-
nationobjectsincreases,thee?ciencyofDijkstraalgo-
rithmkeepssteady,butthee?ciencyoftheshortestpath
indexalgorithmdecreases.However,evenwhenthereare
moredestinationobjects,thee?ciencyoftheshortestpath
indexalgorithmishigherthanthatofDijkstraalgorithm.
Finally,asthenumberofthegraphnodesincreases,the
e?ciencyofbothalgorithmsdecreases,butthee?ciencyof
theshortestpathindexalgorithmishigherthanthatofDijk-
straalgorithm.Evenwhentherearefewergraphvertices,the
e?ciencyoftheshortestpathindexalgorithmishigher.
networkdatabase.Thismethodisaprecomputation
method.Itstationizesthedynamicproblembybuilding
index.Inthealgorithmcomplexityandtheexperimental
analysis,theperformanceofourmethodisbetterthanthat
ofthemethodusingdirectlyDijkstraalgorithm.
Comparedwithotherqueryalgorithmsoftheshortestpath,
therearethefollowingspecialitiesorinitiativesinthispaper:
(1)Itsolvestheshortestpathproblembetweenmoving
objects.
(2)Throughthealgorithmofbuildingtheshortestpath
index,itchangestheproblemofcomputingtheshort-
estpathbetweentwomovingpointstotheproblem
ofcomputingtheshortestpathbetweentwomotion-
lessedges,thereforethecomplexityofthecomputa-
tionislowered.
5.Conclusions
Inthisstudy,weproposed,realized,andanalyzeda
shortestpathqueryalgorithmformovingobjectsinspatial
898
X.Yinetal./ProgressinNaturalScience18(2008)893–899
Fig.4.Thenumberofgraphnodeschanged.
(3)Thisalgorithmdoesnotdependonthespecialityof
[3]DenardoEV,FoxBL.Shortest-routemethodsI.Reaching,pruning,
andbuckets.OperRes1979;27:161–86.
[4]DijkstraEW.Anoteontwoproblemsinconnexionwithgraphs.
NumerMath1959;1:269–71.
thede?nednetwork,soitcanbeusedinmanyother
networks.
[5]FredmanML,TarjanRE.Fibonacciheapsandtheirusesin
improvednetworkoptimizationalgorithms.JAssocComputMach
1987;34:596–615.
Acknowledgements
[6]GalloG,PallottinoS.Shortestpathsalgorithms.AnnalOperRes
1988;13:3–79.
[7]GoldbergAV.Asimpleshortestpathalgorithmwithlinearaverage
time.In:Proc.9thESA,lecturenotesincomputerscienceLNCS,vol.
2161,Springer;2001,p.230–41.
ThisworkwassupportedbyNationalNaturalScience
FoundationofChina(GrantNo.60573164).
References
[8]GoldbergAV.Shortestpathalgorithms:engineeringaspects.In:
Proc.ESAAC’01,lecturenotesincomputerscience.Springer;2001.
[9]GoldbergAV,SilversteinC.ImplementationsofDijkstra’salgorithm
basedonmulti-levelbuckets.In:Lecturenotesineconomicsand
mathematicalsystems450(refereedproceedings),Springer;1997.p.
292–327.
[1]CherkasskyBV,GoldbergAV,RadzikT.Shortestpathsalgorithms:
theoryandexperimentalevaluation.MathProg1996;73:129–74.
[2]DantzigGB.Linearprogrammingandextensions.Princeton:Prince-
tonUniv.Press;1962.
X.Yinetal./ProgressinNaturalScience18(2008)893–899
899
[10]JacobR,MaratheMV,NagelK.Acomputationalstudyofrouting
algorithmsforrealistictransportationnetworks.OperRes
1962;10:476–99.
[11]MeyerU.Single-sourceshortestpathsonarbitrarydirectedgraphsin
linearaveragetime.In:Proc.12thACM-SIAMsymposiumon
discretealgorithms,Washington,DC,USA;2001.p.797–806.
[12]ThorupM.Undirectedsingle-sourceshortestpathswithpositive
integerweightsinlineartime.JAssocComputMach1999;46:362–94.
[13]ZhanFB,NoonCE.Shortestpathalgorithms:anevaluationusing
realroadnetworks.TranspSci1998;32:65–73.
[22]LautherU.Anextremelyfast,exactalgorithmfor?ndingshortest
pathsinstaticnetworkswithgeographicalbackground.In:IfGI-
prints22.InstitutfuerGeoinformatik,UniversitaetMuenster(ISBN
3-936616-22-1);2004.p.219–30.
[23]WagnerD,WillhalmT.Geometricspeed-uptechniquesfor?nding
shortestpathsinlargesparsegraphs.In:Europeansymposiumon
algorithms,Budapest,Hungary;2003.
[24]SandersP,SchultesD.Fastandexactshortestpathqueriesusing
highwayhierarchies.In:Proc.13thannualEuropeansymposium
algorithms,PalmadeMallorca,Spain;2005.
[14]IkedaT,HsuMY,ImaiH,etal.Afastalgorithmfor?ndingbetter
routesbyAIsearchtechniques.In:Proc.vehiclenavigationand
informationsystemsconference.IEEE,Yokohama,Japan;1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 西醫(yī)臨床雙向轉(zhuǎn)診機(jī)制試題及答案
- 圖形測(cè)試題及答案大全
- 護(hù)士資格證考試復(fù)習(xí)時(shí)間分配試題及答案
- 智慧挑戰(zhàn)測(cè)試題及答案
- 衛(wèi)生管理與社區(qū)健康的考核題
- 高三同步輔導(dǎo)材料(第7講)第二節(jié) 中國(guó)共產(chǎn)黨領(lǐng)導(dǎo)的多黨合作和政治協(xié)商制度
- 尤為關(guān)注的專利審核標(biāo)準(zhǔn)試題及答案
- 花藝師職業(yè)發(fā)展的核心能力與考試內(nèi)容的關(guān)聯(lián)試題及答案
- 職級(jí)答辯測(cè)試題及答案
- 藥品專業(yè)術(shù)語(yǔ)及其應(yīng)用試題及答案
- 動(dòng)火作業(yè)檢查清單
- 空氣能室外機(jī)保養(yǎng)維護(hù)記錄表
- 重慶郵電大學(xué)本科畢業(yè)設(shè)計(jì)(論文)參考模板-2020版
- 吊車(chē)包月租賃合同完美參考
- DB52∕T 046-2018 貴州省建筑巖土工程技術(shù)規(guī)范
- 高中客觀題的10大解題技法
- 六年級(jí)下冊(cè)語(yǔ)文《獄中聯(lián)歡》課件
- 螺桿壓縮機(jī)知識(shí)(課堂PPT)
- 預(yù)算業(yè)務(wù)管理流程圖
- 美國(guó)環(huán)保局—空氣污染物排放和控制手冊(cè)
- LED燈具PCB板工藝設(shè)計(jì)規(guī)范(完整版)
評(píng)論
0/150
提交評(píng)論