![測(cè)量誤差基本知識(shí)_第1頁(yè)](http://file4.renrendoc.com/view/4e052c77f86dace8c95a0ab2de63e5b5/4e052c77f86dace8c95a0ab2de63e5b51.gif)
![測(cè)量誤差基本知識(shí)_第2頁(yè)](http://file4.renrendoc.com/view/4e052c77f86dace8c95a0ab2de63e5b5/4e052c77f86dace8c95a0ab2de63e5b52.gif)
![測(cè)量誤差基本知識(shí)_第3頁(yè)](http://file4.renrendoc.com/view/4e052c77f86dace8c95a0ab2de63e5b5/4e052c77f86dace8c95a0ab2de63e5b53.gif)
![測(cè)量誤差基本知識(shí)_第4頁(yè)](http://file4.renrendoc.com/view/4e052c77f86dace8c95a0ab2de63e5b5/4e052c77f86dace8c95a0ab2de63e5b54.gif)
![測(cè)量誤差基本知識(shí)_第5頁(yè)](http://file4.renrendoc.com/view/4e052c77f86dace8c95a0ab2de63e5b5/4e052c77f86dace8c95a0ab2de63e5b55.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
測(cè)量誤差基本知識(shí)第1頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月第5章測(cè)量誤差及數(shù)據(jù)處理的基本知識(shí)
§5.1概述
§5.2測(cè)量誤差的種類
§5.3偶然誤差的特性及其概率密度函數(shù)
§5.4衡量觀測(cè)值精度的指標(biāo)
§5.5誤差傳播定律
§5.6同精度直接觀測(cè)平差
§5.7不同精度直接觀測(cè)平差
§5.8最小二乘法原理及其應(yīng)用
第2頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月
◆測(cè)量與觀測(cè)值
◆觀測(cè)與觀測(cè)值的分類
●觀測(cè)條件
●等精度觀測(cè)和不等精度觀測(cè)
●直接觀測(cè)和間接觀測(cè)
●獨(dú)立觀測(cè)和非獨(dú)立觀測(cè)§5.1測(cè)量誤差概述第3頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月§5.1測(cè)量誤差概述
◆測(cè)量誤差及其來(lái)源●測(cè)量誤差的來(lái)源(1)儀器誤差:儀器精度的局限、軸系殘余誤差等。(2)人為誤差:判斷力和分辨率的限制、經(jīng)驗(yàn)等。(3)外界條件的影響:溫度變化、風(fēng)、大氣折光等
●
測(cè)量誤差的表現(xiàn)形式
●
測(cè)量誤差(真誤差=觀測(cè)值-真值)(觀測(cè)值與真值之差)(觀測(cè)值與觀測(cè)值之差)第4頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月例:誤差處理方法
鋼尺尺長(zhǎng)誤差ld
計(jì)算改正
鋼尺溫度誤差lt
計(jì)算改正
水準(zhǔn)儀視準(zhǔn)軸誤差I(lǐng)
操作時(shí)抵消(前后視等距)
經(jīng)緯儀視準(zhǔn)軸誤差C
操作時(shí)抵消(盤左盤右取平均)
……
……2.系統(tǒng)誤差
——
誤差出現(xiàn)的大小、符號(hào)相同,或按規(guī)律性變化,具有積累性?!裣到y(tǒng)誤差可以消除或減弱。
(計(jì)算改正、觀測(cè)方法、儀器檢校)測(cè)量誤差分為:粗差、系統(tǒng)誤差和偶然誤差§5.2測(cè)量誤差的種類1.粗差(錯(cuò)誤)——超限的誤差第5頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月3.偶然誤差——誤差出現(xiàn)的大小、符號(hào)各不相同,表面看無(wú)規(guī)律性。
例:估讀數(shù)、氣泡居中判斷、瞄準(zhǔn)、對(duì)中等誤差,導(dǎo)致觀測(cè)值產(chǎn)生誤差。
●準(zhǔn)確度(測(cè)量成果與真值的差異)
●最或是值(最接近真值的估值,最可靠值)
●測(cè)量平差(求解最或是值并評(píng)定精度)4.幾個(gè)概念:
●精(密)度(觀測(cè)值之間的離散程度)第6頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月舉例:
在某測(cè)區(qū),等精度觀測(cè)了358個(gè)三角形的內(nèi)角之和,得到358個(gè)三角形閉合差i(偶然誤差,也即真誤差)
,然后對(duì)三角形閉合差i
進(jìn)行分析。
分析結(jié)果表明,當(dāng)觀測(cè)次數(shù)很多時(shí),偶然誤差的出現(xiàn),呈現(xiàn)出統(tǒng)計(jì)學(xué)上的規(guī)律性。而且,觀測(cè)次數(shù)越多,規(guī)律性越明顯?!?.3偶然誤差的特性第7頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月第8頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月用頻率直方圖表示的偶然誤差統(tǒng)計(jì):頻率直方圖的中間高、兩邊低,并向橫軸逐漸逼近,對(duì)稱于y軸。頻率直方圖中,每一條形的面積表示誤差出現(xiàn)在該區(qū)間的頻率k/n,而所有條形的總面積等于1。各條形頂邊中點(diǎn)連線經(jīng)光滑后的曲線形狀,表現(xiàn)出偶然誤差的普遍規(guī)律
圖5-1誤差統(tǒng)計(jì)直方圖第9頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月◆從誤差統(tǒng)計(jì)表和頻率直方圖中,可以歸納出偶然誤差的四個(gè)特性:特性(1)、(2)、(3)決定了特性(4),特性(4)具有實(shí)用意義。
3.偶然誤差的特性(1)在一定的觀測(cè)條件下,偶然誤差的絕對(duì)值不會(huì)超過(guò)一定的限值(有界性);(2)絕對(duì)值小的誤差比絕對(duì)值大的誤差出現(xiàn)的機(jī)會(huì)多(趨向性);(3)絕對(duì)值相等的正誤差和負(fù)誤差出現(xiàn)的機(jī)會(huì)相等(對(duì)稱性);(4)當(dāng)觀測(cè)次數(shù)無(wú)限增加時(shí),偶然誤差的算術(shù)平均值趨近于零
(抵償性):第10頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月偶然誤差具有正態(tài)分布的特性當(dāng)觀測(cè)次數(shù)n無(wú)限增多(n→∞)、誤差區(qū)間d無(wú)限縮小(d→0)時(shí),各矩形的頂邊就連成一條光滑的曲線,這條曲線稱為“正態(tài)分布曲線”,又稱為“高斯誤差分布曲線”。所以偶然誤差具有正態(tài)分布的特性。圖5-1誤差統(tǒng)計(jì)直方圖第11頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月1.方差與標(biāo)準(zhǔn)差
由正態(tài)分布密度函數(shù)式中、為常數(shù);
=2.72828…x=y正態(tài)分布曲線(a=0)令:
,上式為:§5.4衡量精度的指標(biāo)第12頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月標(biāo)準(zhǔn)差的數(shù)學(xué)意義
表示的離散程度x=y較小較大稱為標(biāo)準(zhǔn)差:上式中,稱為方差:第13頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月測(cè)量工作中,用中誤差作為衡量觀測(cè)值精度的標(biāo)準(zhǔn)。中誤差:觀測(cè)次數(shù)無(wú)限多時(shí),用標(biāo)準(zhǔn)差表示偶然誤差的離散情形:上式中,偶然誤差為觀測(cè)值與真值X之差:觀測(cè)次數(shù)n有限時(shí),用中誤差m表示偶然誤差的離散情形:i=i-
X第14頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月P123表5-2第15頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月
m1小于m2,說(shuō)明第一組觀測(cè)值的誤差分布比較集中,其精度較高;相對(duì)地,第二組觀測(cè)值的誤差分布比較離散,其精度較低:
m1=2.7是第一組觀測(cè)值的中誤差;
m2=3.6是第二組觀測(cè)值的中誤差。第16頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月2.容許誤差(極限誤差)
根據(jù)誤差分布的密度函數(shù),誤差出現(xiàn)在微分區(qū)間d內(nèi)的概率為:誤差出現(xiàn)在K倍中誤差區(qū)間內(nèi)的概率為:
將K=1、2、3分別代入上式,可得到偶然誤差分別出現(xiàn)在一倍、二倍、三倍中誤差區(qū)間內(nèi)的概率:
P(||m)=0.683=68.3P(||2m)=0.954=95.4P(||3m)=0.997=99.7測(cè)量中,一般取兩倍中誤差(2m)作為容許誤差,也稱為限差:|容|=3|m|或|容|=2|m|第17頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月
3.相對(duì)誤差(相對(duì)中誤差)
——誤差絕對(duì)值與觀測(cè)量之比。
用于表示距離的精度。用分子為1的分?jǐn)?shù)表示。分?jǐn)?shù)值較小相對(duì)精度較高;分?jǐn)?shù)值較大相對(duì)精度較低。
K2<K1,所以距離S2精度較高。例2:用鋼尺丈量?jī)啥尉嚯x分別得S1=100米,m1=0.02m;
S2=200米,m2=0.02m。計(jì)算S1、S2的相對(duì)誤差。
0.0210.021
K1=——=——;K2=——=——
100500020010000解:第18頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月一.一般函數(shù)的中誤差令的系數(shù)為,(c)式為:由于和是一個(gè)很小的量,可代替上式中的和:
(c)代入(b)得對(duì)(a)全微分:(b)設(shè)有函數(shù):為獨(dú)立觀測(cè)值設(shè)有真誤差,函數(shù)也產(chǎn)生真誤差(a)§5.5誤差傳播定律第19頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月對(duì)Z觀測(cè)了k次,有k個(gè)式(d)對(duì)(d)式中的一個(gè)式子取平方:(i,j=1~n且i≠j)(e)對(duì)K個(gè)(e)式取總和:(f)第20頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月(f)(f)式兩邊除以K,得(g)式:(g)由偶然誤差的抵償性知:(g)式最后一項(xiàng)極小于前面各項(xiàng),可忽略不計(jì),則:<<前面各項(xiàng)即(h)第21頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月(h)考慮,代入上式,得中誤差關(guān)系式:(5-10)上式為一般函數(shù)的中誤差公式,也稱為誤差傳播定律。第22頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月
通過(guò)以上誤差傳播定律的推導(dǎo),我們可以總結(jié)出求觀測(cè)值函數(shù)中誤差的步驟:
1.列出函數(shù)式;
2.對(duì)函數(shù)式求全微分;
3.套用誤差傳播定律,寫出中誤差式。第23頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月1.倍數(shù)函數(shù)的中誤差
設(shè)有函數(shù)式(x為觀測(cè)值,K為x的系數(shù))
全微分得中誤差式例:量得地形圖上兩點(diǎn)間長(zhǎng)度=168.5mm0.2mm,
計(jì)算該兩點(diǎn)實(shí)地距離S及其中誤差ms:解:列函數(shù)式求全微分中誤差式二.幾種常用函數(shù)的中誤差
第24頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月2.線性函數(shù)的中誤差
設(shè)有函數(shù)式
全微分
中誤差式例:設(shè)有某線性函數(shù)其中
、
、分別為獨(dú)立觀測(cè)值,它們的中誤差分別為求Z的中誤差。解:對(duì)上式全微分:由中誤差式得:第25頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月
函數(shù)式全微分中誤差式3.算術(shù)平均值的中誤差式
由于等精度觀測(cè)時(shí),,代入上式:得
由此可知,算術(shù)平均值的中誤差比觀測(cè)值的中誤差縮小了倍。
●對(duì)某觀測(cè)量進(jìn)行多次觀測(cè)(多余觀測(cè))取平均,是提高觀測(cè)成果精度最有效的方法。第26頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月4.和或差函數(shù)的中誤差
函數(shù)式:
全微分:
中誤差式:當(dāng)?shù)染扔^測(cè)時(shí):上式可寫成:例:測(cè)定A、B間的高差,共連續(xù)測(cè)了9站。設(shè)測(cè)量每站高差的中誤差,求總高差的中誤差。
解:
第27頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月觀測(cè)值函數(shù)中誤差公式匯總
觀測(cè)值函數(shù)中誤差公式匯總
函數(shù)式函數(shù)的中誤差一般函數(shù)倍數(shù)函數(shù)
和差函數(shù)
線性函數(shù)
算術(shù)平均值
第28頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月誤差傳播定律的應(yīng)用
用DJ6經(jīng)緯儀觀測(cè)三角形內(nèi)角時(shí),每個(gè)內(nèi)角觀測(cè)4個(gè)測(cè)回取平均,可使得三角形閉合差m15
。例1:要求三角形最大閉合差m15,問(wèn)用DJ6經(jīng)緯儀觀測(cè)三角形每個(gè)內(nèi)角時(shí)須用幾個(gè)測(cè)回??=(1+2+3)-180解:由題意:2m=15,則m=7.5每個(gè)角的測(cè)角中誤差:由于DJ6一測(cè)回角度中誤差為:由角度測(cè)量n測(cè)回取平均值的中誤差公式:第29頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月誤差傳播定律的應(yīng)用例2:試用中誤差傳播定律分析視距測(cè)量的精度。解:(1)測(cè)量水平距離的精度
基本公式:
求全微分:
水平距離中誤差:
其中:
第30頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月誤差傳播定律的應(yīng)用例2:試用中誤差傳播定律分析視距測(cè)量的精度。解:(2)測(cè)量高差的精度基本公式:
求全微分:
高差中誤差:
其中:
第31頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月誤差傳播定律的應(yīng)用例3:(1)用鋼尺丈量某正方形一條邊長(zhǎng)為求該正方形的周長(zhǎng)S和面積A的中誤差.解:(1)周長(zhǎng),(2)用鋼尺丈量某正方形四條邊的邊長(zhǎng)為其中:求該正方形的周長(zhǎng)S和面積A的中誤差.
面積,
周長(zhǎng)的中誤差為全微分:面積的中誤差為全微分:第32頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月解:(1)周長(zhǎng)和面積的中誤差分別為例3:(2)用鋼尺丈量某正方形四條邊的邊長(zhǎng)為其中:求該正方形的周長(zhǎng)S和面積A的中誤差.
(2)周長(zhǎng);周長(zhǎng)的中誤差為
面積
得周長(zhǎng)的中誤差為全微分:
但由于第33頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月▓觀測(cè)值的算術(shù)平均值(最或是值)▓用觀測(cè)值的改正數(shù)v計(jì)算觀測(cè)值的中誤差
(即:白塞爾公式)§5.6同(等)精度直接觀測(cè)平差第34頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月
一.觀測(cè)值的算術(shù)平均值(最或是值、最可靠值)
證明算術(shù)平均值為該量的最或是值:
設(shè)該量的真值為X,則各觀測(cè)值的真誤差為1=1-
X2=2-
X
······
n=n-
X對(duì)某未知量進(jìn)行了n次觀測(cè),得n個(gè)觀測(cè)值1,2,···,n,則該量的算術(shù)平均值為:x==1+2+···+nnn上式等號(hào)兩邊分別相加得和:L=第35頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月當(dāng)觀測(cè)無(wú)限多次時(shí):得兩邊除以n:由當(dāng)觀測(cè)次數(shù)無(wú)限多時(shí),觀測(cè)值的算術(shù)平均值就是該量的真值;當(dāng)觀測(cè)次數(shù)有限時(shí),觀測(cè)值的算術(shù)平均
值最接近真值。所以,算術(shù)平均值是最或是值。L≈X第36頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月觀測(cè)值改正數(shù)特點(diǎn)二.觀測(cè)值的改正數(shù)v
:
以算術(shù)平均值為最或是值,并據(jù)此計(jì)算各觀測(cè)值的改正數(shù)v,符合[vv]=min的“最小二乘原則”。Vi=L-
i(i=1,2,···,n)特點(diǎn)1——改正數(shù)總和為零:對(duì)上式取和:以代入:通常用于計(jì)算檢核L=nv=nL-
nv
=n-=0v
=0特點(diǎn)2——[vv]符合“最小二乘原則”:則即vv=(x-)2=min=2(x-)=0dvvdx∵(x-)=0nx-=0x=n第37頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月精度評(píng)定
比較前面的公式,可以證明,兩式根號(hào)內(nèi)的部分是相等的,即在與中:精度評(píng)定——用觀測(cè)值的改正數(shù)v計(jì)算中誤差一.計(jì)算公式(即白塞爾公式):第38頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月證明如下:真誤差:改正數(shù):證明兩式根號(hào)內(nèi)相等對(duì)上式取n項(xiàng)的平方和由上兩式得其中:第39頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月證明兩式根號(hào)內(nèi)相等中誤差定義:白塞爾公式:第40頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月解:該水平角真值未知,可用算術(shù)平均值的改正數(shù)V計(jì)算其中誤差:例:對(duì)某水平角等精度觀測(cè)了5次,觀測(cè)數(shù)據(jù)如下表,求其算術(shù)平均值及觀測(cè)值的中誤差。算例1:次數(shù)觀測(cè)值VVV備注1764249-4162764240+5253764242+394764246-115764248-39平均764245[V]=0[VV]=60764245±1.74第41頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月距離丈量精度計(jì)算例算例2:對(duì)某距離用精密量距方法丈量六次,求①該距離的算術(shù)平均值;②觀測(cè)值的中誤差;③算術(shù)平均值的中誤差;④算術(shù)平均值的相對(duì)中誤差:凡是相對(duì)中誤差,都必須用分子為1的分?jǐn)?shù)表示。第42頁(yè),課件共48頁(yè),創(chuàng)作于2023年2月§5.7不同精度直接觀測(cè)平差一、權(quán)的概念權(quán)是權(quán)衡利弊、權(quán)衡輕重的意思。在測(cè)量工作中權(quán)是一個(gè)表示觀測(cè)結(jié)果可靠程度的相對(duì)性指
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版道路建設(shè)項(xiàng)目投資合作協(xié)議3篇
- 2025版智能鎖具五金配件銷售合同范本3篇
- 二零二五版水陸聯(lián)運(yùn)貨物運(yùn)輸賠償協(xié)議書3篇
- 二零二五年度家庭清潔與護(hù)理服務(wù)合同標(biāo)準(zhǔn)范本3篇
- 二零二五年度個(gè)人專利權(quán)質(zhì)押連帶擔(dān)保協(xié)議樣本4篇
- 二零二五年度海洋生物資源開(kāi)發(fā)與保護(hù)合作協(xié)議4篇
- 安全專項(xiàng)整治工作匯報(bào)
- 二零二五年度全國(guó)銷售業(yè)務(wù)合同范本(電子版)
- 二零二五年度個(gè)人房屋建設(shè)合同附件清單合同模板
- 二零二五版水井施工安全教育與培訓(xùn)合同3篇
- 高速公路巡邏車司機(jī)勞動(dòng)合同
- 2025中國(guó)大唐集團(tuán)內(nèi)蒙古分公司招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 充血性心力衰竭課件
- 挖掘機(jī)售后保養(yǎng)及維修服務(wù)協(xié)議(2024版)
- 職業(yè)分類表格
- 廣東省深圳高級(jí)中學(xué)2023-2024學(xué)年八年級(jí)下學(xué)期期中考試物理試卷
- 電網(wǎng)建設(shè)項(xiàng)目施工項(xiàng)目部環(huán)境保護(hù)和水土保持標(biāo)準(zhǔn)化管理手冊(cè)(變電工程分冊(cè))
- 體檢科運(yùn)營(yíng)可行性報(bào)告
- 設(shè)立項(xiàng)目管理公司組建方案
- 薪酬戰(zhàn)略與實(shí)踐
- 答案之書(解答之書)-電子版精選答案
評(píng)論
0/150
提交評(píng)論