1-1數(shù)列和收斂數(shù)列課件_第1頁
1-1數(shù)列和收斂數(shù)列課件_第2頁
1-1數(shù)列和收斂數(shù)列課件_第3頁
1-1數(shù)列和收斂數(shù)列課件_第4頁
1-1數(shù)列和收斂數(shù)列課件_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

§1.1數(shù)列和收斂數(shù)列

2011/09/16“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):播放——?jiǎng)⒒找?、概念的引入正六邊形的面積正十二邊形的面積正形的面積2、截丈問題:“一尺之棰,日截其半,萬世不竭”二、數(shù)列的定義例如注意:數(shù)列對(duì)應(yīng)著數(shù)軸上一個(gè)點(diǎn)列.可看作一動(dòng)點(diǎn)在數(shù)軸上依次取三、數(shù)列的極限問題:當(dāng)無限增大時(shí),是否無限接近于某一確定的數(shù)值?如果是,如何確定?給定數(shù)列播放問題:“無限接近”意味著什么?如何用數(shù)學(xué)語言刻劃它.通過上面演示實(shí)驗(yàn)的觀察:如果數(shù)列沒有極限,就說數(shù)列是發(fā)散的.注:注:注:注:幾何解釋:其中數(shù)列極限的定義未給出求極限的方法.例1注意:證所以,例2證所以,說明:常數(shù)列的極限等于同一常數(shù).小結(jié):用定義證數(shù)列極限存在時(shí),關(guān)鍵是任意給定尋找N,但不必要求最小的N.例3分析:證“放大不等式”證明:分析:例4證明:證明:分析:例5證明:例6分析:證證明:例7分析:證明:思考:求證例8預(yù)備知識(shí):分析1:證明1:分析2:證明2:的敘述方法否四、應(yīng)記住的結(jié)果:(仿例8)——當(dāng)五、小結(jié)數(shù)列:研究其變化規(guī)律;數(shù)列極限:極限思想,精確定義,幾何意義;六、作業(yè)習(xí)題1.1:

1、2;3、4、5、6、7.思考題證明要使只要使從而由得取當(dāng)時(shí),必有成立思考題解答~(等價(jià))證明中所采用的實(shí)際上就是不等式即證明中沒有采用“適當(dāng)放大”的值經(jīng)常不斷地學(xué)習(xí),你就什么都知道。你知道得越多,你就越有力量StudyConstantly,AndYouWillKnowEverything.TheMoreYouKnow,TheMorePowerfulYouWillBe寫在最后謝謝你的到來學(xué)習(xí)并沒有結(jié)束,希望大家繼續(xù)努力LearningIsNotOver.IHopeYouWillContinue

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論