




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ContinuousRandomVariables
Chapter5NutanS.MishraDepartmentofMathematicsandStatisticsUniversityofSouthAlabamaContinuousRandomVariableWhenrandomvariableXtakesvaluesonanintervalForexampleGPAofstudentsX[0,4]HighdaytemperatureinMobileX(20,∞)Recallincaseofdiscretevariablesasimpleeventwasdescribedas(X=k)andthenwecancomputeP(X=k)whichiscalledprobabilitymassfunctionIncaseofcontinuousvariablewemakeachangeinthedefinitionofanevent.ContinuousRandomVariableLetX[0,4],thenthereareinfinitenumberofvalueswhichxmaytake.IfweassignprobabilitytoeachvaluethenP(X=k)0foracontinuousvariableInthiscasewedefineaneventas(x-x
≤X≤x+x)wherexisaverytinyincrementinx.AndthusweassigntheprobabilitytothiseventP(x-x
≤X≤x+x)=f(x)dxf(x)iscalledprobabilitydensityfunction(pdf)Propertiesofpdf(cumulative)DistributionFunctionThecumulativedistributionfunctionofacontinuousrandomvariableisWheref(x)istheprobabilitydensityfunctionofx.
Relationbetweenf(x)andF(x)MeanandVarianceExercise5.2TofindthevalueofkThusf(x)=4x3for0<x<1P(1/4<x<3/4)==P(x>2/3)==Exercise5.7Exercise5.13ProbabilityanddensitycurvesP(a<Y<b):P(100<Y<150)=0.42Usefullink:/faculty/Stefan_Waner/RealWorld/cprob/cprob2.htmlNormalDistributionX=normalrandomvariatewithparametersμandσifitsprobabilitydensityfunctionisgivenby
μandσarecalledparametersofthenormaldistribution/~mjaneba/help/normalcurve.htmlStandardNormalDistributionThedistributionofanormalrandomvariablewithmean0andvariance1iscalledastandardnormaldistribution.StandardNormalDistributionTheletterZistraditionallyusedtorepresentastandardnormalrandomvariable.zisusedtorepresentaparticularvalueofZ.Thestandardnormaldistributionhasbeentabularized.
StandardNormalDistributionGivenastandardnormaldistribution,findtheareaunderthecurve (a)totheleftofz=-1.85 (b)totheleftofz=2.01 (c)totherightofz=–0.99 (d)torightofz=1.50 (e)betweenz=-1.66andz=0.58StandardNormalDistributionGivenastandardnormaldistribution,findthevalueofksuchthat (a)P(Z<k)=.1271 (b)P(Z<k)=.9495 (c)P(Z>k)=.8186 (d)P(Z>k)=.0073 (e)P(0.90<Z<k)=.1806 (f)P(k<Z<1.02)=.1464NormalDistributionAnynormalrandomvariable,X,canbeconvertedtoastandardnormalrandomvariable:
z=(x–μx)/sxUsefullink:
(picturesofnormalcurvesborrowedfrom:/~lynch/509Spring03/25NormalDistributionGivenarandomVariableXhavinganormaldistributionwithμx=10andsx=2,findtheprobabilitythatX<8.4
6810121416zxRelationshipbetweentheNormalandBinomialDistributionsThenormaldistributionisoftenagoodapproximationtoadiscretedistributionwhenthediscretedistributiontakesonasymmetricbellshape.Somedistributionsconvergetothenormalastheirparametersapproachcertainlimits.Theorem6.2:IfXisabinomialrandomvariablewithmeanμ=npandvariances2=npq,thenthelimitingformofthedistributionofZ=(X–np)/(npq).5asn,isthestandardnormaldistribution,n(z;0,1).Exercise5.19UniformdistributionTheuniformdistributionwithparametersαandβhasthedensityfunction
ExponentialDistribution:BasicFactsDensityCDFMeanVarianceKeyProperty:MemorylessnessReliability:AmountoftimeacomponenthasbeeninservicehasnoeffectontheamountoftimeuntilitfailsInter-eventtimes:AmountoftimesincethelasteventcontainsnoinformationabouttheamountoftimeuntilthenexteventServicetimes:Amountofremainingservicetimeisindependentoftheamountofservicetimeelapsedsofar
ExponentialDistribution
Theexponentialdistributionisaverycommonlyuseddistributioninreliabilityengineering.Duetoitssimplicity,ithasbeenwidelyemployedevenincasestowhichitdoesnotapply.Theexponentialdistributionisusedtodescribeunitsthathaveaconstantfailurerate.
Thesingle-parameterexponentialpdfisgivenby:where:
·
λ
=constantfailurerate,infailuresperunitofmeasurement,e.g.failuresperhour,percycle,etc.·
λ
=.1/m·
m=meantimebetweenfailures,ortoafailure.·
T=operatingtime,lifeorage,inhours,cycles,miles,actuations,etc.
Thisdistributionrequirestheestimationofonlyoneparameter,,foritsapplication.JointprobabilitiesFordiscretejointprobabilitydensityfunction(jointpdf)ofak-dimensionaldiscreterandomvariableX=(X1,X2,…,Xk)isdefinedtobef(x1,x2,…,xk)=P(X1=x1,X2=x2,…,Xk=xk)forallpossiblevaluesx=(x1,x2,…,xk)inX.Let(X,Y)havethejointprobabilityfunctionspecifiedinthefollowingtableJointdistributionConsiderJointprobabilitydistributionJointProbabilityDistributionFunction
f(x,y)>0
Marginalpdfofx&y
hereisanexample
x=1,2,3y=1,2Marginalpdfofx&y
Considerthefollowingexample
x=1,2,3
y=1,2IndependentRandomVariablesIfPropertiesofexpectationsforadiscretepdf,f(x),Theexpectedvalueofthefunctionu(x),E[u(X)]=Mean==E[X]=Variance=Var(X)=2=x2=E[(X-)2]=E[X2]-2Foracontinuouspdf,f(x)
E(X)=MeanofX=
E[(X-)2]=E(X2)-[E(X)]2=VarianceofX=PropertiesofexpectationsE(aX+b)=aE(X)+bVa
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云計算HCIP??荚囶}與參考答案
- 個人借款申請書范文
- 業(yè)務員年度工作計劃
- 企業(yè)弱電維護合同范本
- 三八婦女節(jié)護士愛崗敬業(yè)的演講稿
- 南通批發(fā)市場用電合同范本
- 醫(yī)院房子出售合同范本
- 臺球俱樂部采購合同范本
- 南京租房陰陽合同范例
- 區(qū)域 加盟 合同范本
- 醫(yī)院管理案例運用PDCA降低住院患者跌倒發(fā)生率課件
- 家譜族譜宗譜樣本(唐氏家譜)
- DB32T 3699-2019 城市道路照明設施養(yǎng)護規(guī)程
- 自然辯證法概論課件:第四章馬克思主義科學技術社會論
- 2021版大象版四年級科學下冊12奇妙的植物教學課件
- 精雕JDPaint快捷鍵大全
- 山東建筑電氣與智能化疑難問題分析與解答
- 2022年鄭州衛(wèi)生健康職業(yè)學院單招英語模擬試題(附答案解析)
- Q∕GDW 10354-2020 智能電能表功能規(guī)范
- 土壤學習題與答案
- 觀摩臺標準化建設方案
評論
0/150
提交評論