版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
CognitiveBiases
inthe
RiskMatrixWilliamSiefert,M.S.
EricD.SmithBoeingSystemsEngineeringGraduateProgramMissouriUniversityofScienceandTechnology?2019SmithWilliamSiefert,M.S.“Fearofharmoughttobeproportionalnotmerelytothegravityoftheharm,butalsototheprobabilityoftheevent.”Logic,ortheArtofThinkingAntoineArnould,1662ConsequencexLikelihood=RiskRiskgraphingHyperboliccurvesHyperboliccurvesinlog-loggraphiso-risklines
5x5Risk“Cube”O(jiān)riginalCurrentObjectivevs.Subjectivedata"Campfireconversation"piecePresentSituationRiskmatricesarerecognizedbyindustryasthebestwayto:consistentlyquantifyrisks,aspartofarepeatableandquantifiableriskmanagementprocessRiskmatricesinvolvehuman:NumericaljudgmentCalibration–location,gradationRounding,CensoringDataupdatingoftenapproachedwithunderconfidenceoftendistrustedbydecisionmakersGoalRiskManagementimprovementandbetteruseoftheriskmatrixConfidenceincorrectassessmentofprobabilityandvalueAvoidanceofspecificmistakesRecommendedactionsHeuristicsandBiasesDanielKahnemanwontheNobelPrizeinEconomicsin2019"forhavingintegratedinsightsfrompsychologicalresearchintoeconomicscience,especiallyconcerninghumanjudgmentanddecision-makingunderuncertainty.“Similaritiesbetweencognitivebiasexperimentsandtheriskmatrixaxesshowthatriskmatricesaresusceptibletohumanbiases.AnchoringFirstimpressiondominatesallfurtherthought1-100wheeloffortunespunNumberofAfricannationsintheUnitedNations?Smallnumber,like12,thesubjectsunderestimatedLargenumber,like92,thesubjectsoverestimatedObviatingexpertopinionTheanalystholdsacircularbeliefthatexpertopinionorreviewisnotnecessarybecausenoevidencefortheneedofexpertopinionispresent.HeuristicsandBiasesPresenceofcognitivebiases–eveninextensiveandvettedanalyses–canneverberuledout.Innatehumanbiases,andexteriorcircumstances,suchastheframingorcontextofaquestion,cancompromiseestimates,judgmentsanddecisions.Itisimportanttonotethatsubjectsoftenmaintainastrongsensethattheyareactingrationallywhileexhibitingbiases.TerminologySubjectiveParametersLikelihood(L)Consequence(C)SubjectiveProbability,π(p)Utility(negative),U-(v)Shownon:Ordinate,YaxisAbscissa,XaxisObjectiveParametersObjectiveProbability,pObjectiveValue,v5x5Risk“Cube”O(jiān)riginalObjectivevs.Subjectivedata"Campfireconversation"pieceLikelihoodFrequency
ofoccurrenceisobjective,discreteProbabilityiscontinuous,fiction"Humansjudgeprobabilitiespoorly"[CosmidesandTooby,2019]Likelihoodisasubjectivejudgment (unlessmathematical)'Exposure'byprojectmanagertimelessConsequence,CObjectiveConsequencedeterminationiscostlyRangeofconsequenceTotallife-cyclecostMil-Std882d$damageHumanimpactEnvironmentLawCatastrophic>$1MDeath,DisabilityirreversibledamageViolateCritical:$1M-$200KHospitalizationto>=3personnelReversibledamageViolateMarginal:$200K-$10KLossofworkdays;injuryMitigationdamageNegligible:$10K-$2KNolostworkday;injuryMinimaldamageCaseStudyIndustryriskmatrixdata1412originalandcurrentriskpoints(665)TimeoffirstentryknownTimeoflastupdateknownCost,ScheduleandTechnicalknownSubjectmatternotknownBiasesrevealedLikelihoodandconsequencejudgmentMagnitudevs.Reliability[GriffinandTversky,1992]MagnitudeperceivedmorevalidDatawithoutstandingmagnitudesbutpoorreliabilityarelikelytobechosenandusedSuggestion:DatawithuniformsourcereliabilitySpeciousnessofdataObservation:riskmatricesaremagnitudedriven,withoutregardtoreliabilityExpectedDistributionfororiginalriskpointsinRiskMatrix?BivariateNormalUniform:1.EstimationinaPre-DefineScaleBias
Responsescaleeffectsjudgment[Schwarz,1990]Twoquestions,random50%ofsubjects:Pleaseestimatetheaveragenumberofhoursyouwatchtelevisionperweek:__________X_____________1-45-89-1213-1617-20MorePleaseestimatetheaveragenumberofhoursyouwatchtelevisionperweek:__________X_____________1-2 3-45-67-89-10MoreLikelihoodMarginalDistributionofOriginalPoints123455827275428840Normaldistributionwithμ=3.0,σ=0.783833067633038?=actual–normal20-5878-422(Χ2=22,LogisticΧ2>~10rejectH0H0=NormalEffectofEstimationinaPre-DefinedScale
‘Peopleestimateprobabilitiespoorly’[CosmidesandTooby,2019]Consequence/SeverityamplifiersEffectofEstimationinaPre-DefinedScale
‘Peopleestimateprobabilitiespoorly’[CosmidesandTooby,2019]Consequence/SeverityamplifiersSeverityAmplifiersLackofcontrolLackofchoiceLackoftrustLackofwarningLackofunderstandingManmadeNewnessDreadfulnessPersonalizationRecallabilityImminency5x5RiskMatrixSituationassessment5x5RiskMatricesseektoincreaseriskestimationconsistencyHypothesis:CognitiveBiasinformationcanhelpimprovethevalidityandsensitivityofriskmatrixanalysisProspectTheoryDecision-makingdescribedwithsubjectiveassessmentof:ProbabilitiesValuesandcombinationsingamblesProspectTheorybreakssubjectivedecisionmakinginto:preliminary‘screening’stage,probabilitiesandvaluesaresubjectivelyassessedsecondary‘evaluation’stagecombinesthesubjectiveprobabilitiesandutilitiesHumansjudgeprobabilitiespoorly*SubjectiveProbability,π(p)
smallprobabilitiesoverestimatedlargeprobabilitiesunderestimatedπ(p)=
(pδ)/[pδ+(1-p)δ](1/δ) p=objectiveprob. 0<δ≤1Whenδ=1,π(p)=p=objectiveprobabilityusualvalueforδ:
δ=0.69forlosses
δ=0.61forgainsGainsandlossesarenotequal*SubjectiveUtility
Valuesconsideredfromreferencepointestablishedbythesubject’swealthandperspectiveFramingGainsandlossesare subjectivelyvalued1-to-2ratio.Forgains:U+(v)=Ln(1+v)Forlosses:U-(v)=-(μ)Ln(1–cv) μ=2.5
c=constant
v=objectivevalue
ImplicationofProspectTheoryfortheRiskMatrixANALYSESANDOBSERVATIONS
OFINITIALDATA
Impedimentsfortheappearanceofcognitivebiasesintheindustrydata:IndustrydataaregranularwhilethepredictionsofProspectTheoryareforcontinuousdataQualitativedescriptionsof5rangesoflikelihoodandconsequencenon-linearinfluenceintheplacementofriskdatumpoints Nevertheless,theevidenceofcognitivebiasesemergesfromthedata2.DiagonalBiasAnticipationoflatermovingofriskpointstowardtheoriginRiskpointswithdrawnfromtheoriginupwardandrightwardalongthediagonalRegressionon1412OriginalPointsInterceptSlopeR2.20.220.223.ProbabilityCenteringBias
LikelihoodsarepushedtowardL=3SymmetrictoafirstorderImplicationofProspectTheoryfortheRiskMatrix3a.AsymmetricalProbabilityBiasSubjectiveprobabilitytransformationπ(p)predictsthatlikelihooddatawillbepushedtowardL=3LargeprobabilitiestranslateddownmorethansmallprobabilitiesaretranslatedupReducedamountoflargesubjectiveprobabilities,comparatively1234558272754288404.ConsequenceBias
ConsequenceispushedhigherEngineeridentifieswithincreasedrisktoentirecorporation'Personal'corporateriskStatisticalEvidenceforConsequenceBias
MaxatC=4C=1significantlylessthanC=5counts C=2significantlylessthanC=4ConsequenceOriginalDataPoints1234520145538599110Normaldistributioncomparison:χ2=600,df=40.0probabilityConsequencesmoothedConsequenceincreased,→,byAmplifiersH0=NormalConsequencetranslationLikelihoodmitigationrecommendationsEngineersandManagementTechnicalriskhighestpriorityScheduleriskcommunicatedwellbymanagementCostrisklikelihoodlessfrequentlycommunicatedbymanagement.
HighercognizanceofcostriskwillbevaluableattheengineeringlevelLikelihoodmitigation1.Technical2.Schedule3.CostConsequenceMitigationEngineers:ScheduleconsequenceseffectcareersTechnicalconsequenceseffectjobperformancereviewsCostconsequencesareremoteandassociatedwithmanagementHighercognizanceofcostriskwillbevaluableattheengineeringlevelConsequencemitigation1.Schedule2.Technical3.CostCONCLUSIONFirsttimethattheeffectsofcognitivebiaseshavebeendocumentedwithintheriskmatrixClearevidencethatprobabilityandvaluetranslations,aslikelihoodandconsequencejudgments,arepresentinindustryriskmatrixdataSteps1)thetranslationswerepredictedbyprospecttheory,2)historicaldataconfirmedpredictionsRiskmatricesarenotobjectivenumbergridsSubjective,albeituseful,meanstoverifythatriskitemshavereceivedrisk-mitigatingattention.DataCollectionImprovementsContinuumofdatafromRiskmanagementto(Issuemanagement)OpportunitymanagementDifferentdatabasesyearsofdataineachTimeWaterfallRiskchartsSuggestionsforriskmanagementimprovementObjectivebasisofrisk:FrequencydataforProbability$forConsequenceLong-term,institutionalrationalityTeamapproachIterationsPublicreviewExpertreviewBiasesanderrorsawarenessFutureworkConfirmationofthepresenceofprobabilitybiases,andvaluebiasesinriskdatafromotherindustrie
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷庫房維修合同范例
- 凈水站加盟合同范本
- 保障協(xié)議合同范例
- 專業(yè)類合同范例
- 再加工銷售合同范本
- 關(guān)于加工協(xié)議合同范本
- 買地下車位合同范例
- 農(nóng)村項目承包施工合同范例
- 免稅技術(shù)合同范例
- 農(nóng)村農(nóng)業(yè)托管合同范本
- 地理標志專題通用課件
- 《小英雄雨來》讀書分享會
- 【人教版】九年級化學(xué)上冊全冊單元測試卷【1-7單元合集】
- 蓋板涵施工工藝流程配圖豐富
- 中央導(dǎo)管相關(guān)血流感染防控
- 混合動力汽車發(fā)動機檢測與維修中職PPT完整全套教學(xué)課件
- 產(chǎn)時子癇應(yīng)急演練文檔
- 小學(xué)美術(shù)-《神奇的肥皂粉》教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 測量管理體系內(nèi)審檢查表
- 信號與系統(tǒng)復(fù)習(xí)題及答案
- 班組月度考核評分表
評論
0/150
提交評論