數(shù)學(xué)九年級上冊-第24章-圓-2422-直線和圓的位置關(guān)系-課件_第1頁
數(shù)學(xué)九年級上冊-第24章-圓-2422-直線和圓的位置關(guān)系-課件_第2頁
數(shù)學(xué)九年級上冊-第24章-圓-2422-直線和圓的位置關(guān)系-課件_第3頁
數(shù)學(xué)九年級上冊-第24章-圓-2422-直線和圓的位置關(guān)系-課件_第4頁
數(shù)學(xué)九年級上冊-第24章-圓-2422-直線和圓的位置關(guān)系-課件_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

24.2.2直線和圓的位置關(guān)系了解直線和圓相交、相切、相離等概念;會判斷直線和圓的位置關(guān)系;通過對直線和圓的位置關(guān)系的探究,讓學(xué)生體會分類討論、數(shù)形結(jié)合的思想.教學(xué)目標(biāo)利用圓心到直線的距離與半徑的關(guān)系判別直線和圓的位置關(guān)系.教學(xué)重、難點(diǎn)復(fù)習(xí)回顧引入新知探究新知鞏固落實(shí)課堂小結(jié)布置作業(yè)教學(xué)環(huán)節(jié)復(fù)習(xí)回顧點(diǎn)與圓的位置關(guān)系都有哪些?我們?nèi)绾芜M(jìn)行判斷?復(fù)習(xí)回顧

點(diǎn)到圓心的距離為d,圓的半徑為r,則:AB點(diǎn)在圓外

d>r;點(diǎn)在圓上

d=r;點(diǎn)在圓內(nèi)

d<r.CO復(fù)習(xí)回顧如何定義直線外一點(diǎn)到這條直線的距離?復(fù)習(xí)回顧

直線外一點(diǎn)到這條直線的垂線段的長度,叫做點(diǎn)到直線的距離.連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短.引入新知

我們在紙上畫一條直線

l,把鑰匙環(huán)看作一個圓.在紙上移動鑰匙環(huán),你能發(fā)現(xiàn)移動鑰匙環(huán)的過程中,它與直線

l的公共點(diǎn)個數(shù)的變化情況嗎?引入新知l●O引入新知l●O●O●O●O●O引入新知OOlllO引入新知lO

直線和圓沒有公共點(diǎn),這時我們說這條直線和圓相離.引入新知直線和圓只有一個公共點(diǎn),這時我們說這條直線和圓相切.這條直線叫做圓的切線,這個點(diǎn)叫做切點(diǎn).OlA引入新知直線和圓有兩個公共點(diǎn),這時我們說這條直線和圓相交,這條直線叫做圓的割線.OlAB探究新知

思考:直線和圓會不會有三個公共點(diǎn)?OlAB探究新知OPrdOPrdOPrd

思考:探究新知OOlllO探究新知

直線l

與圓O相離

直線l上的點(diǎn)都在⊙O外對于直線l上任意一點(diǎn)P,

都有OP>r探究新知

直線l

與⊙O相離d>r

OA⊥l于A,OA為圓心O到直線l的距離

記為d探究新知

直線l

與⊙O相離

d>r探究新知

直線l

與⊙O相離

d>r?反之成立嗎?探究新知

直線l與⊙O相離

d>r直線上距離⊙O的圓心O

最近的點(diǎn)在⊙O外

直線上每一點(diǎn)都在⊙O外探究新知

直線l與⊙O相離

d>r探究新知

直線l

與⊙O相切

d=r探究新知

直線l與⊙O相交

d<r鞏固落實(shí)例1

已知圓的直徑是13cm,如果圓心與直線的距離分別是:

(1)4.5cm;(2)6.5cm;(3)8cm;

那么直線和圓分別是什么位置關(guān)系?有幾個公共點(diǎn)?

解:由題意可知:r=6.5cm;(1)4.5cm<

6.5cm,即d<r,因此直線和圓相交,有兩個公共點(diǎn).鞏固落實(shí)由題意可知:r=6.5cm;(2)6.5cm=6.5cm,即d=r,因此直線和圓相切,有一個公共點(diǎn).(3)8cm>6.5cm,即d>r,因此直線和圓相離,沒有公共點(diǎn).鞏固落實(shí)例2

Rt△ABC中,∠C=90°,AC=3cm,BC=4

cm,

C

為圓心,r

為半徑的圓與直線AB

有怎樣的位置關(guān)系?為什么?

(1)r=2cm;(2)r=2.4

cm;(3)r=3cm.鞏固落實(shí)CBAdD解:由勾股定理可得:

AB=5cm,過點(diǎn)C作CD⊥AB于D,則CD的長度即為點(diǎn)C到AB的距離d.鞏固落實(shí)CBAdD解得:d=CD=2.4cm.根據(jù):

(1)當(dāng)

r=2cm時,

2.4cm>2cm,即d>r,因此直線AB和⊙C相離;鞏固落實(shí)CBAdD解得:d=CD=2.4cm.根據(jù):

(2)當(dāng)

r=2.4cm時,

2.4cm=2.4cm,即d=r,因此直線AB和⊙C相切;鞏固落實(shí)CBAdD解得:d=CD=2.4cm.根據(jù):

(3)當(dāng)

r=3cm時,

2.4cm<3cm,即d<r,因此直線AB和⊙C相交.鞏固落實(shí)思考1:

Rt△ABC,∠C=90°,AC=3cm,BC=4cm,以

C為圓心,

(1)當(dāng)r滿足

時,⊙C與直線AB相離;(2)當(dāng)r滿足

時,⊙C與直線AB相切;(3)當(dāng)r滿足

時,⊙C與直線AB相交.鞏固落實(shí)CBA鞏固落實(shí)CBAdd=2.4cmD思考1:

Rt△ABC,∠C=90°,AC=3cm,BC=4cm,以

C

為圓心,

(2)當(dāng)r滿足

時,⊙C與直線AB相切;

r=2.4鞏固落實(shí)CBAdd=2.4cmD思考1:

Rt△ABC,∠C=90°,AC=3cm,BC=4cm,以

C

為圓心,

(1)當(dāng)r滿足

時,⊙C與直線AB相離;0<r<2.4鞏固落實(shí)CBAdd=2.4cmD思考1:

Rt△ABC,∠C=90°,AC=3cm,BC=4cm,以

C為圓心,

(3)當(dāng)r滿足

時,⊙C與直線AB相交.

r>2.4鞏固落實(shí)思考2

Rt△ABC,∠C=90°,AC=3cm,BC=4cm,若要使⊙C與線段AB只有一個公共點(diǎn),這時⊙C的半徑r要滿足什么條件?鞏固落實(shí)CBAdd=2.4cmD思考2

r=2.4或3<r≤4課堂小結(jié)

1.直線與圓有三種位置關(guān)系;

2.根據(jù)公共點(diǎn)的個數(shù)進(jìn)行判斷;

3.根據(jù)圓心到直線的距離和半徑數(shù)量大

小的關(guān)系進(jìn)行判斷.布置作業(yè)⊙O的半徑為5cm,已知點(diǎn)O與直線AB的距離為d,

根據(jù)條件填寫d的范圍:(1)若直線AB和⊙O相離,則

;(2)若直線AB和⊙O相切,則

;(3)若直線AB和⊙O相交,則

.

布置作業(yè)2.已知圓心O到直線

l的距離為d,⊙O

的半

徑為r,若d、r

是方程

的兩個根,

則直線l

和⊙O

的位置關(guān)系是________.肯承認(rèn)錯誤則錯已改了一半。燃燒一個人的靈魂,正是對生命的愛,那是至死方休。希望是人生的乳母?!撇卟寄切﹪L試去做某事卻失敗的人,比那些什么也不嘗試做卻成功的人不知要好上多少。帶著知識走向?qū)W生,不如帶著

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論