講義文案詳解5054a725_第1頁(yè)
講義文案詳解5054a725_第2頁(yè)
講義文案詳解5054a725_第3頁(yè)
講義文案詳解5054a725_第4頁(yè)
講義文案詳解5054a725_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

FrequentPatternMiningusingSemanticFP-GrowthforEffectiveWebServiceRankingOmairDepartmentofComputerScience,UniversityofCalgary,Calgary,Alberta,Canada.:moshafiq@ucalgary.ca

RedaAlhajj,JonG.RokneDepartmentofComputerScience,UniversityofCalgary,Calgary,Alberta,Canada.AutomatedRankingiscrucialintheprocessofautomatedWebServicesexecution.Oftenadaptationandranking(usedinterchangeably)ofdiscoveredWebservicesiscarriedoutusingfunctionalandnonfunctionalinformationofWebServices.Existingapproachesareeitherfoundtobeonlyfocusingonsemanticmodelingandrepresentationonly,orusingdataminingandmachinelearningbasedapproachesonunstructuredandrawdatatoperformdiscoveryandranking.WeproposeanapproachtoallowsemanticallyformalizedrepresentationoflogsduringWebServiceexecutionandthenusesuchlogstoperformrankinganptationofdiscoveredWebServices.WehavebuiltSemanticFPTreebasedtechniquetoperformassociationrulelearningonfunctionalandnonfunctionalcharacteristicsofWebServices.TheprocessofautomatedexecutionofWebServicesisimprovedintwosteps,i.e.,(1)weprovidesemanticallyformalizedlogsthatmaintainwellstructuredandformalizedinformationaboutpastinctionsofServicesConsumersandWebServices,(2)weperformanextendedassociationruleminingonsemanticallyformalizedlogstofindoutanypossiblecorrelationinfunctionalandnonfunctionalcharacteristicsofWebServicesduringpastexecutionwhichisthenusedinautomatedrankinganptationofWebServices.WebServices;Discovery;Ranking;AssociationRuleMining;SemanticFP-Growth,SemanticLogs WebServices[1]havechangedtheWebfromstatictodynamicnaturewhereapplicationsmayactasServiceConsumersinordertoinvokeandutilizeWebServicesovertheWeb.ApplicationsasServiceConsumerscandynamicallyinvokeaWebServicebyprovidinginputandcangetaresponsebackasoutputprocessedbasedonthefunctionalityprovidedbytheWebService.BecauseoftheopennatureoftheWeb,itisnotpossibleforServiceConsumerstohaveapre-knowledgeofalltheavailableWebServicesovertheWeb[2].DynamicinvocationofWebServicesrequiresdynamicdiscoveryandrankingofWebServicesthatarefoundovertheWeb.InordertobringdynamismintheprocessofWebServiceinvocationandexecution,itiscrucialtomaketheprocessofWebServicediscoveryandrankingautomated[9].SeveralapproacheshavebeenproposedtomaketheprocessofdiscoveryandrankingofWebServicesautomated.However,wehaveseenmajorlackinginsuchapproaches.TraditionaldiscoveryandrankingapproachesforWebServiceshavebeenfoundtoo

limitedandarebasedonlyonsyntacticandpre-knowninformationofserviceswhichcauseslimitationsforuser-applicationstousenewlyavailableservices.Insteadofusingsyntacticapproaches,newapproacheshavebeenbuiltwhicharebasedonusinginformationfromsemanticallyenricheddescriptionsofWebServices.Theseapproachesrequireprecise,expressiveandmachineinterpretabledescriptionofserviceswithanaimtomakeiteasierforuserstosearchfortheservicesrequired.TheseapproacheshaveshownagoodpotentialtowardsenablingautomationinWebServicesandbecauseofthatSemanticWebServicesresearchhavegainedmomentumbutarestillfoundtobenotintheirfullpotentialtobeusedinpracticalscenariosforautomateddiscoveryandrankingofWebServicesasitwouldbeimpracticaltoassumethateveryuserandserviceproviderwillorporatefull-fledgesemanticsinrequestsaswellasWebServicedescriptions,respectively.Ontheotherhand,usingonlythebasicinformationaboutWebServices(i.e.,WSDLbasedWebServicedescriptions)doesnotprovideenoughinformationtobeabletodiscoverrequiredWebServicesoutoftheavailableones.Weattempttosolvethisdilemmabyproposingahybridapproachofpartiallyusingsemantics(suchasfunctionalandnon-functionalpropertiesofWebServices),andusethisinformationtoperformdiscoveryandrankingofWebServices. RelatedTherehasbeenalotofrelatedwork[7][10][11][13]intheareaofautomatedrankinganptationofWebServices.SuchrelatedworkspansfromusinghighlyformalizedandsemanticallyenricheddescriptionsofWebServicesanduserqueries,totheusageofdataminingandmachinelearningapproachesonrawdataofWebServices.SeveralapproacheshavebeenfoundthathaveusedassociationruleminingforadaptationandrankingofWebServicesandothersimilarsystems.Givenbelowarerelatedandexistingapproachesfollowedbycomparativeysisofsuchapproaches.WehaveobservedfromtheysisandreviewofexistingandrelatedapproacheslistedabovethatalmostalltheapproachesareeitherfocusedtowardsapplyingdataminingandheuristictechniquesonsyntacticdataofWebServicesandhencearesyntacticandlimited.WebelievethatsuchinformationislimitedandisnotenoughtofindtherankingofWebServices.WealsoexploredotherapproacheswhicharebasedonsemanticallyenricheddescriptionsofWebServices,likeNon-Functional20142014IEEEInternationalConferenceonWebProperties(NFPs),whichattempttoperformautomateddiscovery,rankingofWebServicesbutarelimited.First,suchapproachesdonottakeintoaccountanypasthistoryofinctionsofusersandWebServices,andsecond,suchapproachesdonottakeintoaccountanyextensivedataminingormachinelearningbasedapproachestomakeuseofsuchsemanticallyformalizedandwell-structureddata.Therefore,suchapproachesarestillnotintheirfullpotentialtoperformautomatedrankingofWebServices.Suchapproachesarenotonlylimitedfromtheofaccuracyandcompleteness,butarealsolimitedfromtheofscalabilityandhencetakesignificantamountoftimetoperformthetaskofautomateddiscoveryandranking.ThistakesustothedilemmaofeitheruserhighlyenrichedandformalsemanticsofWebServiceswhichwouldprovidealotofinformationaboutWebServices. OurproposedSemanticFP-GrowthalgorithmusingSemanticLogsenablestoperformeffectiveandefficientrankinganptationofWebServices.First,itproposestotakeintoaccountpastinctionsofusersandprovidersofWebServicesduringtheprocessofrankingandproposestosemanticallyformalizelogsforpastinctionsbetweenusersandprovidersofWebServices.Second,ituseslight-weightsemanticsforformalizationoflogsthatludefunctionalandnon-functionalaspectsofWebServicesaswellastheirpastinctions.Third,itprovidesanenhancedassociationruleminingalgorithmasSemanticFP-GrowthtoperformassociationruleminingbasedysisonSemanticLogswhichisthenusedtoperformrankinganptationforWebServices.Givenbelowareafewdefinitionswhichareimportanttopresenttheproposedsolution.Figure1.OverallarchitectureofproposedFigure1depictstheoverallpictureofrankingandadaptationofWebServicesusingAssociationRuleMiningbasedonSemanticFP-Growth.UserapplicationsasServiceConsumerssearchforWebServicesusingamiddlewareapplicationthatperformsdiscovery,rankingandadaptationandfinallyinvoketherequiredWebServices.Foreachinction,usersasServiceConsumersencapsulatetheirrequestsinourprescribedformforSemanticLogsandServiceProvidersmodelWebServicesusingprescribedspecificationsasperSemanticWebServices[8].EachoftherequestsfromuserapplicationsfordiscoveringandinvokingWebServicesaremodeledandstoredasSemanticLogsinarepository.SuchSemanticLogsarelateronretrievedandrepresentedintheformofSemanticFP-Treeandare

processedbyourproposedsemanticextensiontotheFP-Growthalgorithm.TheconstructedSemanticFP-TreeisthendiscretizedaftertranslatingsemanticaxiomsandgroundedintoanormalFP-TreefromwhichAssociationRulesamongdifferenteventsinthelogsarediscovered.ThediscoveredassociationrulesarethenusedduringtheprocessofrankingandadaptationofWebServicesselectionoutofthediscoveredsetofWebServicestoselectthebestone.OursolutionuniquelytakestheprocessofrankinganptationtothenextlevelbymakingtheinformationaboutWebServicesandpastinctionsformalizedandwell-structuredandthenusesassociationruleminingtechniquetoprocesstheinformation.Figure2showsaSemanticFP-TreethatisconstructedwithitemsasLogEvents,SC,SPorWS,usingthedefinitionsandalgorithmsmentionedinthissection.Logsareproducedduringtheprocessofdiscovery,ranking,adaptationandinvocationofWebServicesbyuserapplications.Logsrepresentthefoot-printofthewholeprocessofexecution.ThedescriptionoflogsishighlydependentuponWebServicedescriptions.ItcontainsasetofeventscalledLogEvents.Figure2.SemanticFPTreeofitemsinSemanticEvaluationandAssociationRulesarediscoveredandgeneratedafterprocessingandminingSemanticLogsusingourproposedapproachforSemanticextensionstoFP-Growth.Oncetheassociationrulesarediscovered,thediscoveredsetofWebServicesarematchedandranked.Wehaveuseddatasetsfrom[3][4]whichprovidedifferentparametersludingfunctionalandnon-functionalpropertiesofWebServices.TheexperimentswereperformedonInCore2CPU2.40GHz,4GBofRAM,Windows7.WeusedWeka z/ml/weka/)toperformAssociationRuleMiningondataderivedfromtheSemanticLogs.Weconductedanumberoftestsonthedatasetusedusingourproposedsolution.Westartedwithcomparisonana?vediscoveryengineforWebServicesthatdoesnotuseanyoptimizationorrankingtechniques.Wecomparedthebehaviorofbothapproachesandfoundoutthatthena?vediscoveryenginehastogothroughthedescriptionsofalltheWebServices,whereas,ourproposedapproachshortlistsandranksWebServicestofindoutthebestoneandhenceitrequirestoprocessasmallersetofWebServicedescriptions.Thena?vediscoveryenginehastoprocessthewholesearchspacewhichmakesitsprocessingtimeproportionaltothenumberofWebServicedescriptionsavailableirrespectiveofthenumberofWebServicesthatmaybeabletofulfilluserrequirements.Weusedanptedasignificantlyextensivetestdesigninordertomakestatisticallyfirmstatementsonthebehavioroftraditionalna?vediscoveryapproachaswellasourownproposedapproach.Weperformedseveralrepetitivetestrunsforsearchspacesforupto500availableWebServicesdescriptionsoutofwhichonlyafewoftheWebServicescouldmatchuserrequirements.Ourproposedsolutioncouldlimitthesearchspacebyperformingtheranking,andevenbetterthantheotherrankingapproach.Whereas,thetraditionalna?vediscoveryenginehadtosearchintoalmostallgivensearchspace.Thenextmetricusedfortheevaluationofourproposedapproachis‘precision’.PrecisionmeanstheratioofcorrectWebServicesoutofalltheWebServicesretrieved.Table1providesanoverviewofMeanAveragePrevision(MAP)calculatedfordifferenttestrunsi.e.,na?veapproachwithoutusinganyrankingtechniques,theotherrankingtechniqueandourproposedapproachforranking,ascase1,case2andcase3respectively.WehadlowerMAPforvalidationofrankedresultsbecausena?veapproachhastogothroughwholesearchspace.Whereas,rankingapproachescase2andcase3gottopre-filterWebServices.Ourproposedapproachpre-filteredWebServicesusingassociationrulesandthenperformdiscoveryandrankingonsmallersearchspace.WefurthernoticedahigherMAPforresults,usingourproposedsolutionandhavingtoperformdiscoveryandrankingonasmall,targetedaswellasrelevantsearchspace.Inmostofthecasesduringourexperiments,precisionwasfoundtobereasonablygood.Ourproposedapproachiseventuallybasedonourearlierwork[5][6]ontryingtoachieveasuitabletrade-offbetweentheaccuracyrequiredversustime-basedefficiencyofthematakingandrankingmechanismbypartiallyutilizingsemanticsthatkeepdatawell-expressedandwell-structuredandmakesiteasierfordataminingbasedapproachestouseitratherthanonlyfocusingonmodelingWebServicedescriptionswithoverlycomplexsemanticsortryingtoemploydataminingsolutiononunstructuredaswellasdisperseddata.Table1.ComparingMeaageCaseCaseCase TheusageofassociationruleminingwithSemanticLogshelpedusintwofoldmanner,i.e.,(1)semanticlogshelpedinprovidingwell-structuredandformalizeddatafromwhichitwaseasierforourtechniquetodeduceandcollectinformation,and(2)theassociationruleminingapproachhelpedinfindingoutpotentialbenefitsanddrawbacksofusingsomeWebServicesertainscenarioswhichhelpedusinpre-filteringWebServicestohaveasmallerandmoretargetedsearchspaceandhenceleadtomoreefficientandeffectiverankingtofindrequiredWebServices.WehavefoundoutthatsemanticannotationstoWebServicesareofhighnoveltyifusedreasonablywithproperlytunedandadaptedreasoningandminingprocess.Asanextstep,wewillinvestigateandbuildfurtherhybridtechniquesinvolvingsemanticannotationsanddataminingtoaddressmoreissuesforenhancedmonitoringandmanagementofWebServicesaswellasrelatedapplicationecution.

Inthispaper,weproposedauniqueapproachforrankingandadaptationofWebServicesusingAssociationRuleMiningbasedonourproposedSemanticLogsandSemanticextensionofFP-Growth.WeyzedexistingapproachesandfoundoutthatsuchapproachesarelimitedassuchapproacheseitherfocusonlyforsemanticallyformalizingdescriptionofWebServiceswithlimitedmechanismstoutilizesuchdescriptionsoruseheuristicbasedtechniquesonlimitedandsyntacticdataofWebServicesforrankingandadaptationofWebServices.SuchapproachesalsomerelytakeintoaccountpastinctionofServiceConsumersandServiceProviders.OurproposedapproachallowssemanticallyformalizedrepresentationoflogsduringWebServiceexecutionwhicharethenusedtoperformrankingandadaptationofthediscoveredWebServices.Evaluationshowsthetrade-offofpartiallyusingsemanticswithsemanticallyadaptedAssociationRuleMiningtechniqueshelpsinimprovingWebServicesselection.TheauthorswouldliketoacknowledgeNSERC,AITFandUniversityofCalgaryforsupportingthisresearch.WebServicesatW3C:W3C mendationsonWSDLandSOAP.AvailableatM.Bell"IntroductiontoServiceOrientedModeling",ServiceOrientedModeling:Serviceysis,Design,andArchitecture.(2008).Wiley&Sons,3.Y.Zhang,Z.Zheng,M.R.Lyu,"Wpress:AQoSawareSearchEngineforWebServices",inIEEEICWS2010,pages=8390,July2010,Miami,FL,USA.Y.Li,Y.Liu,L.Zhang,G.Li,B.Xie,andJ.Sun,“AnExploratoryStudyofWebServicesontheInte”,In2007IEEEICWS,SaltLakeCity,Utah,USA,2007,pp.380387.O.Shafiq,R.Alhajj,J.Rokne:LightweightSemantics&BayesianClassification,ahybridtechniqueforwebservicediscovery,inIEEEIRI,Aug2010,LasVegas,NV,USA.O.Shafiq,R.Alhajj,J.G.Rokne,"OntheSocialAspectsofalizedRankingforWebServices",In13thIEEEHPCC2011,September242011,Banff,AB,Canada.A.Segev,E.Toch,“ContextBasedMatchingandRankingofWebServicesforComposition”,inIEEETransactionsonServicesComputing,Vol.2,No.3,pp210222,Sept2009.D.Roman,H.Lausen,andU.Keller.D2v1.3.WebService ,OctomberD.Fensel,etal.:WhatiswrongwithWebServicesDiscovery.InproceedingsoftheW3CWorkshoponFrameworksforSemanticsinWebServices,Innsbruck,Austria,June2005.W.Rong,K.Liu,L.Liang,"alizedWebServiceRankingviaUserGroupCombiningAssociationRule",IEEEICWS2009,July610,2009,LosAngeles,CA,USA.E.AlMasri,Q.H.Mahmoud:InvestigatingwebservicesonWorldWideWeb.InWWW2008,Apr2008,Beijing,.E.AlMasri,Q.H.Mahmoud,“QoSbasedDiscoveryandRankingofWebServices”,in16thIEEE Honolulu,Hawa,USA,August1316,2007.B.M.Fonseca,P.BGolgher,E.S.DeMoura,andN.Ziviani,Usingassociationrulestodiscoverysearchenginesrelatedqueries.InLAWEB'03,November2003,Santiago,Chile.FP-GrowthWebOmairShafiqReda,JonG.Rokne大學(xué)計(jì)算機(jī)科學(xué)系,加拿大塔省大學(xué)。加拿大艾伯塔。電子郵件:moshafiq@ucalgary.ca電子郵件:{alhajj,rokne}@ucalgary.ca 自動(dòng)排名在自動(dòng)化Web服務(wù)執(zhí)行過(guò)程中至關(guān)重要。通常,使用Web服務(wù)的功能性和非功能性信息WebWebFP-TreeWebWeb1Web(2)Web可能的相關(guān)性,然后將其用于Web服務(wù)的自動(dòng)排名和調(diào)整。FP-GrowthI.Web[1]WebWebWebWebWebWeb了解WebWeb2]Web服務(wù)的動(dòng)態(tài)調(diào)用需要對(duì)通過(guò)WebWebWebWebWebWebWebWebWeb息(即基于WSDL的Web服務(wù)描述)并不能提供足夠的信息來(lái)從可用的Web服務(wù)中發(fā)現(xiàn)所需的Web(Web)的混合方法來(lái)解決這一困境,并使用此信息來(lái)執(zhí)行Web服務(wù)的發(fā)現(xiàn)和排名。7[10][11][12]13]在網(wǎng)絡(luò)服務(wù)的自動(dòng)排名和適應(yīng)領(lǐng)域。此WebWebWebWebWebWeb(NFP),WebWeb的方法來(lái)利用此類語(yǔ)義形式化和結(jié)構(gòu)良好的方法。數(shù)據(jù)。因此,此類方法仍未充分發(fā)揮執(zhí)行Web高度豐富且形式化的Web服務(wù)語(yǔ)義將提供大量有關(guān)Web服務(wù)的信息。FP-GrowthWeb服務(wù)排名和適應(yīng)。首先,它建議在排名過(guò)程中考慮用戶和Web服務(wù)提供商過(guò)去的交互,并建議對(duì)用戶和Web服務(wù)提供商之間過(guò)去交互的日志進(jìn)行語(yǔ)義形式化。其次,它使用輕量級(jí)語(yǔ)義來(lái)形式化日志,包括Web服務(wù)的功能和非功能方面以及它們過(guò)去的交互。第三,它提供了一種增強(qiáng)的關(guān)聯(lián)圖1.所提出解決方案的總體架構(gòu)圖1描述了使用基于語(yǔ)義FP-Growth的關(guān)聯(lián)規(guī)則挖掘?qū)eb服務(wù)進(jìn)行排序和適應(yīng)的總體情況。作為服務(wù)使用者的用戶應(yīng)用程序使用中間件應(yīng)用程序搜索Web服務(wù),該中間件應(yīng)用程序執(zhí)行發(fā)現(xiàn)、排名和適應(yīng),并最終調(diào)用所需的Web服務(wù)。對(duì)于每次交互,作為服務(wù)消費(fèi)者的用戶將他們的請(qǐng)求封裝

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論