版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第2023八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)概念總結(jié)梳理2023八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)概念總結(jié)梳理
要想學(xué)好初二的數(shù)學(xué),首先要端正自己的學(xué)習(xí)態(tài)度,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。八年級(jí)上冊(cè)的數(shù)學(xué)知識(shí)點(diǎn)有什么下面是小編為大家整理的關(guān)于2023八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)概念總結(jié),歡迎大家來閱讀。
八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)概念總結(jié)
第一章勾股定理
定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等于斜邊的平方。
判定:如果三角形的三邊長(zhǎng)a,b,c滿足a+b=c,那么這個(gè)三角形是直角三角形。
定義:滿足a+b=c的三個(gè)正整數(shù),稱為勾股數(shù)。
第二章實(shí)數(shù)
定義:任何有限小數(shù)或無限循環(huán)小數(shù)都是有理數(shù)。無限不循環(huán)小數(shù)叫做無理數(shù)
(有理數(shù)總可以用有限小數(shù)或無限循環(huán)小數(shù)表示)
一般地,如果一個(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。
特別地,我們規(guī)定0的算術(shù)平方根是0。
一般地,如果一個(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根(也叫二次方根)
一個(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根。
求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。
一般地,如果一個(gè)數(shù)x的立方等于a,那么這個(gè)數(shù)x就叫做a的立方根(也叫做三次方根)。
正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
求一個(gè)數(shù)a的立方根的運(yùn)算,叫做開立方,其中a叫做被開方數(shù)。
有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù),即實(shí)數(shù)可以分為有理數(shù)和無理數(shù)。
每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示;反過來,數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù)。即實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的。
在數(shù)軸上,右邊的點(diǎn)表示的數(shù)比左邊的點(diǎn)表示的數(shù)大。
第三章圖形的平移與旋轉(zhuǎn)
定義:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。平移不改變圖形的形狀和大小。
經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行也相等;對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。
在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。旋轉(zhuǎn)不改變圖形的大小和形狀。
任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
第四章四邊形性質(zhì)探索
定義:若兩條直線互相平行,則其中一條直線上任意兩點(diǎn)到另一條直線的距離相等,這個(gè)距離稱為平行線之間的距離。
平行四邊形:兩組對(duì)邊分別平行的四邊形.。對(duì)邊相等,對(duì)角相等,對(duì)角線互相平分。兩組對(duì)邊分別平行的四邊形是平行四邊形,兩組對(duì)邊分別相等的四邊形是平行四邊形,兩條對(duì)角線互相平分的四邊形是平行四邊形,一組對(duì)邊平行且相等的四邊形是平行四邊形
菱形:一組鄰邊相等的平行四邊形……(平行四邊形的性質(zhì))。四條邊都相等,兩條對(duì)角線互相垂直平分,每一條對(duì)角線平分一組對(duì)角。一組鄰邊相等的平行四邊形是菱形,對(duì)角線互相垂直的平行四邊形是菱形,四條邊都相等的四邊形是菱形。
矩形:有一個(gè)內(nèi)角是直角的平行四邊形……(平行四邊形的性質(zhì))。對(duì)角線相等,四個(gè)角都是直角。有一個(gè)內(nèi)角是直角的平行四邊形是矩形,對(duì)角線相等的平行四邊形是矩形。
正方形:一組鄰邊相等的矩形。正方形具有平行四邊形、菱形、矩形的一切性質(zhì)。一組鄰邊相等的矩形是正方形,一個(gè)內(nèi)角是直角的菱形是正方形。
梯形:一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形。一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形是梯形。
等腰梯形:兩條腰相等的梯形。同一底上的兩個(gè)內(nèi)角相等,對(duì)角線相等。兩腰相等的梯形是等腰梯形,同一底上兩個(gè)內(nèi)角相等的梯形是等腰梯形。
直角梯形:一條腰和底垂直的梯形。一條腰和底垂直的梯形是直角梯形。
多邊形:在平面內(nèi),由若干條不在同一條直線上的線段首尾順次相連組成的封閉圖形叫做多邊形。n邊形的內(nèi)角和等于(n-2)×180
多邊形內(nèi)角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做這個(gè)多邊形的外角。
多邊形的外角和都等于360°。三角形、四邊形和六邊形都可以密鋪。
定義:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心。
中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分。
第五章位置的確定
位置表示方法:方位角加距離;坐標(biāo);經(jīng)緯度……
定義:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的書軸組成平面直角坐標(biāo)系。
通常,兩條數(shù)軸分別至于水平位置與鉛直位置,取向右與向上方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,x軸和y統(tǒng)稱坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
圖形隨坐標(biāo)變化:向上/下/左/右平移X個(gè)單位長(zhǎng)度、橫向/縱向拉長(zhǎng)X倍、橫向/縱向壓縮X倍、放大/縮小了X倍、關(guān)于x/y軸成軸對(duì)稱、關(guān)于原點(diǎn)O成中心對(duì)稱……
第六章一次函數(shù)
定義:一般地,在某個(gè)變化過程中,有兩個(gè)變量x和y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中是x自變量,y是因變量。
若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
把一個(gè)函數(shù)的自變量x與對(duì)應(yīng)的因變量y的值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),在直角坐標(biāo)系中描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。
正比例函數(shù)y=kx的圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。
在一次函數(shù)y=kx+b中,
當(dāng)k0時(shí),的值隨值的增大而增大;
當(dāng)k0時(shí),的值隨值的增大而減小。
第七章二元一次方程組
定義:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
像這樣含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
解二元一次方程組的基本思路是“消元”——把“二元”變?yōu)椤耙辉薄?/p>
以一個(gè)未知數(shù)代另一個(gè)未知數(shù)的解法稱為代入消元法,簡(jiǎn)稱代入法。
通過兩式加減消去其中一個(gè)未知數(shù)的解法稱做加減消元法,簡(jiǎn)稱加減法。
第八章數(shù)據(jù)的代表
定義:一般地,對(duì)于n個(gè)數(shù)X1,X2,…Xn,我們把1/n(X1+X2+…+Xn)叫做這個(gè)數(shù)的算術(shù)平均數(shù),簡(jiǎn)稱平均數(shù),記為X。
為A的三項(xiàng)測(cè)試成績(jī)的加權(quán)平均數(shù)。
一般地,個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù),一組數(shù)據(jù)出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
初二上冊(cè)數(shù)學(xué)??贾R(shí)
一、平行線分線段成比例定理及其推論:
1.定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。
2.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例。
3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條線段平行于三角形的第三邊。
二、相似預(yù)備定理:
平行于三角形的一邊,并且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例。
三、相似三角形:
1.定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫做相似三角形。
2.性質(zhì):(1)相似三角形的對(duì)應(yīng)角相等;
(2)相似三角形的對(duì)應(yīng)線段(邊、高、中線、角平分線)成比例;
(3)相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方。
說明:①等高三角形的面積比等于底之比,等底三角形的面積比等于高之比;②要注意兩個(gè)圖形元素的對(duì)應(yīng)。
3.判定定理:
(1)兩角對(duì)應(yīng)相等,兩三角形相似;
(2)兩邊對(duì)應(yīng)成比例,且夾角相等,兩三角形相似;
(3)三邊對(duì)應(yīng)成比例,兩三角形相似;
(4)如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。
四、利用相似三角形證明線段成比例的一般步驟:
1、“定”:先確定四條線段在哪兩個(gè)可能相似的三角形中;
2、“找”:再找出兩個(gè)三角形相似所需的條件;
3、“證”:根據(jù)分析,寫出證明過程。
如果這兩個(gè)三角形不相似,只能采用其他方法,如找中間比或引平行線等。
五、相似與全等:
全等三角形是相似比為1的相似三角形,即全等三角形是相似三角形的特例,它們之間的區(qū)別與聯(lián)系:
1.共同點(diǎn)它們的對(duì)應(yīng)角相等,不同點(diǎn)是邊長(zhǎng)的大小,全等三角形的對(duì)應(yīng)邊相等,而相似三角形的對(duì)應(yīng)的邊成比例。
2.判定方法不同,相似三角形只求形狀相同的,大小不一定相等,所以改“對(duì)應(yīng)邊相等”成“對(duì)應(yīng)邊成比例”。
常見考法
(1)利用判定定理證明三角形相似;(2)利用三角形相似解決圓、函數(shù)的有關(guān)問題。
誤區(qū)提醒
(2)根據(jù)相似三角形找對(duì)應(yīng)邊時(shí),出現(xiàn)失誤找錯(cuò)對(duì)應(yīng)邊,因此在寫比例式時(shí)出錯(cuò),導(dǎo)致解題錯(cuò)誤信息;(2)在定理的實(shí)際應(yīng)用中,常常忽視“夾角相等”這個(gè)重條件,錯(cuò)誤認(rèn)為有兩邊對(duì)應(yīng)比相等,再有一組角相等,就能得到兩個(gè)三角形相似。
1.相似三角形定義:
對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符號(hào)∽表示,讀作相似于。
3.相似三角形的相似比:
相似三角形的對(duì)應(yīng)邊的比叫做相似比。
4.相似三角形的預(yù)備定理:
平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所截成的三角形與原三角形相似。
八年級(jí)上數(shù)學(xué)課的學(xué)習(xí)方法
一、該記的記,該背的背,不要以為理解了就行
對(duì)數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時(shí)再加深理解.打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具.同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題.而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手.
二、幾個(gè)重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系.最常見的等量關(guān)系就是“方程”.
所謂的“方程”思想就是對(duì)于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它.
2、“數(shù)形結(jié)合”的思想
初中數(shù)學(xué)的兩個(gè)分支-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 衛(wèi)生院勞動(dòng)合同模板
- 勞動(dòng)合同變更協(xié)議書
- 酒水銷售協(xié)議合同范本
- 物理真題:2024年高考遼寧卷物理真題
- 2024年中考物理(長(zhǎng)沙卷)真題詳細(xì)解讀及評(píng)析
- 進(jìn)戶門購(gòu)銷合同
- 2025標(biāo)準(zhǔn)網(wǎng)站開發(fā)合同
- 2025軟件購(gòu)買合同
- 育兒嫂家政服務(wù)勞動(dòng)合同協(xié)議
- 技能培訓(xùn)對(duì)員工職業(yè)素質(zhì)的影響
- 音樂教學(xué)集訓(xùn)課程設(shè)計(jì)
- 肺切除手術(shù)的術(shù)前評(píng)估課件
- 《大學(xué)生創(chuàng)新與創(chuàng)業(yè)》課件
- 護(hù)士的護(hù)理職業(yè)生涯規(guī)劃
- 2024年高考語文復(fù)習(xí):古詩文閱讀強(qiáng)化練習(xí)題匯編(含答案解析)
- 不良反應(yīng)事件及嚴(yán)重不良事件處理的標(biāo)準(zhǔn)操作規(guī)程藥物臨床試驗(yàn)機(jī)構(gòu)GCP SOP
- 義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)重點(diǎn)
- 2021上海春考作文題解析及范文(怎樣做與成為什么樣人)
- 2024-2030年全球及中國(guó)水楊酸行業(yè)市場(chǎng)現(xiàn)狀供需分析及市場(chǎng)深度研究發(fā)展前景及規(guī)劃可行性分析研究報(bào)告
- 體育館改造裝修工程施工組織設(shè)計(jì)
- 137案例黑色三分鐘生死一瞬間事故案例文字版
評(píng)論
0/150
提交評(píng)論