版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PartI
PeriodicSignals
Time-descriptions
Thefactthatthegreatmajorityoffunctionswhichmayusefullybeconsideredassignalsarefunctionsoftimelendsjustificationtothetreatmentofsignaltheoryintermsoftimeandoffrequency.AperiodicsignalwillthereforebeconsideredtobeonewhichrepeatsitselfexactlyeveryTseconds,whereTiscalledtheperiodofthesignalwaveform;thetheoreticaltreatmentofperiodicwaveformsassumesthatthiactrepetitionitendedthroughoutalltime,bothpastandfuture.Inpractice,ofcourse,signalsdonotrepeatthemselvesindefiniy.Nevertheless,awaveformsuchastheoutputvoltageofamainsrectifierpriortosmoothingdoesrepeatitselfverymanytimes,anditsysisasastrictlyperiodicsignalyieldsvaluableresults.Inothercases,suchastheelectrocardiogram,thewaveformisquasi-periodicandmayusefullybetreatedastrulyperiodicforsomepurpose.Itisworthnotingthatatrulyrepetitivesignalisofverylittleinterestinacommunicationchannel,senofurtherinformationisconveyedafterthefirstcycleofthewaveformhasbeenreceived.Oneofthemainreasonsfordiscussingperiodicsignalsisthlearunderstandingoftheirysisisagreathelpwhendealingwithaperiodicandrandomones.
Acompletetime- descriptionofsuchasignalinvolvesspecifyingitsvaluepreciselyateveryinstantoftime.Insomecasesthismaybedoneverysimplyusingmathematicalnotation.Fortunay,itisinmanycasesusefultodescribeonlycertainaspectsofasignalwaveform,ortorepresentitbyamathematicalformulawhichisonlyapproximate.Thefollowingaspectsmightberelevparticularcases:
theaveragevalueofthesignal,
thepeakvaluereachedbythesignal,
theproportionofthetotaltimespentbetweenvalueaandb,
theperiodofthesignal.
Ifitisdesiredtoapproximatethewaveformbyamathematicalexpression,suchtechniquesasapolynomialexpansion,aTaylorseries,oraFourierseriesmaybeused.Apolynomialofordernhavingtheform
ftaatat2at3 (1-1)
0 1 2 3
maybeusedtofittheactualcurveat(n+1)arbitrarypoints.Theaccuracyoffitwillgenerallyimproveasthenumberofpolynomialterms reases.Itshouldalsobenotedthattheerrorbetween
thetruesignalwaveformandthepolynomialwillnormally everylargeawayfromtheregionofthefittedpoints,andthatthepolynomialitselfcannotbeperiodic.Whereasapolynomialapproximationfitstheactualwaveformatanumberofarbitrarypoints,thealternativeTaylorseriesapproximationprovidesagoodfittoasmoothcontinuouswaveforminthevicinityofoneselectedpoint.ThecoefficientsoftheTaylorseriesarechosentomaketheseriesanditsderivativesagreewiththeactualwaveformatthispoint.Thenumberoftermsintheseriesdeterminestowhatorderofderivativethisagreementwillextend,andhencetheaccuracywithwhichseriesandactual
waveformagreeintheregionofthepointchosen.ThegeneralformoftheTaylorseriesfor
approximatingafunction
fata
dfa
dt
ta2
2!
d2fa
dt2
tan
n!
dnfa
dtn
ft
ftintheregionofthepointtaisgivenby
(1-2)
Generallyspeaking,thefittotheactualwaveformisgoodintheregionofthepointchosen,butrapidlydeterioratestoeitherside.ThepolynomialandTaylorseriesdescriptionsofasignalwaveformarethereforeonlytobe mendedwhenoneisconcernedtoachieveaccuracyoveralimitedregionofthewaveform.Theaccuracyusuallydecreasesrapidlyawayfromthisregion,althoughitmaybeimprovedbyludingadditionalterms(solongastlieswithintheregionofconvergenceoftheseries).Theapproximationsprovidedbysuchmethodsareneverperiodicinformandcannotthereforebeconsideredidealforthedescriptionofrepetitivesignals.
BycontrasttheFourierseriesapproximationiswellsuitedtotherepresentationofasignalwaveformoveranextendedinterval.Whenthesignalisperiodic,theaccuracyoftheFourierseriesdescriptionismaintainedforalltime,sethesignalisrepresentedasthesumofanumberofsinusoidalfunctionswhicharethemselvesperiodic.BeforeexaminingindetailtheFourierseriesmethodofrepresentingasignal,thebackgroundtowhatisknownasthe‘frequency- ’approachwillbeintroduced.
Frequency-descriptions
Thebasicconceptionoffrequency- ysisisthatawaveformofanycomplexitymaybeconsideredasthesumofanumberofsinusoidalwaveformsofsuitableamplitude,periodicity,and
relativephase.Acontinuoussinusoidalfunctionsintisthoughtofasa‘singlefrequency’
waveoffrequencyradians/second,andthefrequency- descriptionofasignalinvolvesitsbreakdownintoanumberofsuchbasicfunctions.ThisisthemethodofFourier ysis.
Thereareanumberofreasonswhysignalrepresentationintermsofasetofcomponentsinusoidalwavesoccupiessuchacentralroleinsignalysis.Thesuitabilityofasetofperiodicfunctionsforapproximatingasignalwaveformoveranextendedintervalhasalreadybeenmentioned,anditwillbeshownlaterthattheuseofsuchtechniquescausestheerrorbetweentheactualsignalanditsapproximationtobeminimizedinacertainimportanse.Afurtherreason
whysinusoidalfunctionsaresoimportsignalysisisthattheyoccurwidelyinthephysicalworldandareverysusceptibletomathematicaltreatment;alargeandextremelyimportantclassofelectricalandmechanicalsystems,knownas‘linearsystems’,respondssinusoidallywhendrivenbyasinusoidaldisturbingfunctionofanyfrequency.Allthesemanifestationsofsinusoidalfunctioninthephysicalworldsuggestthatsignalysisinsinusoidaltermswillsimplifytheproblemofrelatingasignaltounderlyingphysicalcauses,ortothephysicalpropertiesofasystemordevicethroughwhichithaspassed.Finally,sinusoidalfunctionsformasetofwhatarecalled‘orthogonalfunction’,theratherspecialpropertiesandadvantageofwhichwillnowbediscussed.
Orthogonalfunctions
Vectorsandsignals
Adiscussionoforthogonalfunctionsandoftheirvalueforthedescriptionofsignalsmaybeconvenientlyintroducedbyconsideringtheogybetweensignalsandvectors.Avectorisspecifiedbothbyitsmagnitudeanddirection,familiarexamplesbeingandvelocity.Suppose
wehavetwovectorsV1andV2;geometrically,wedefhecomponentofvectorV1along
vectorV2byconstructingtheperpendicularfrom ofV1
V1C12V2Ve
ontoV2.Wethenhave
(1-3)
wherevectorVeistheerrorintheapproximation.Clearly,thiserrorvectorisofminimumlengthwhenitisdrawnperpendiculartothedirectionofV2.ThuswesaythatthecomponentofvectorV1alongvectorV2isgivenbyC12V2,whereC12ischosensuchastomaketheerrorvectorassmallaspossible.Afamiliarcaseofanorthogonalvectorsystemistheuseofthreemutually
perpendicularaxeso-ordinategeometry.
Thesebasicideasaboutthecomparisonofvectorsmaybeextendedtosignals.Supposewewishtoapproximateasignalf1tbyanothersignalorfunctionf2toveracertainintervalt1tt2;inotherwords
f1tC12f2t fort1tt2
WewishtochooseC12toachievethebestapproximation.Ifwedefheerrorfunction
fetf1tC12f2t (1-4)itmightappearatfirstsightthatweshouldchooseC12soastominimizetheaveragevalueoffetoverthechoseninterval.Thedisadvantageofsuchanerrorcriterionisthatlargepositiveand
negativeerrorsoccurringatdifferentinstantswouldtendtocanceleachotherout.Thisdifficultyisavoidedifwechoosetominimizetheaveragesquared-error,ratherthantheerroritself(thisisequivalenttominimizingthesquarerootofthemean-squarederror,or’rm.s’error).Denotingthe
e
averageoff2tby,wehave
1 t2f2tdt 1 t2ftCft2dt
(1-5)
t2t1t1 e
t2t1t1
1 122
DifferentiatingwithrespecttoC12andputtingtheresultingexpressionequaltozerogivesthevalueofC12forwhichisaminimum.Thus
d 1 t2 ftCft2dt0
122 1
1
dC ttt
1 122
Expandingthebracketandchangingtheorderofintegrationanddifferentiatinggives
C t2ftftdt t2f2tdt
12t 1 2 t 2
1 1
(1-6)
Signaldescriptionbysetsoforthogonalfunctions
Supposethatwehaveapproximatedasignal f1toveracertainintervalbythefunction f2tsothatthemeansquareerrorisminimized,butthatwenowwishtoimprovetheapproximation.Itwillbedemonstratedthataveryattractiveapproachistoexpressthesignalintermsofasetof
functions f2t,f3t,f4t,etc.,whicharemutuallyorthogonal.Supposetheinitial
approximationis
f1tC12f2t (1-7)
andthattheerrorisfurtherreducedbyputting
f1tC12f2tC13f3t (1-8)
where f2tandf3tareorthogonalovertheintervalofinterest.NowthatwehaveorporatedtheadditionaltermC13f3t,itisinterestingtofindwhatthenewvalueof
C12mustbeinorderthatthemeansquareerrorisagainminimized.Wenowhave
fetf1tC12f2tC13f3t (1-9)
andthemeansquareerrorintheintervalt1tt2
1
1 t2
istherefore
2
t2t1
tf1tC12f2tC13f3t.dt (1-10)
DifferentiatingpartiallywithrespecttoC12tofindthevalueofC12forwhichthemeansquareerrorisagainminimized,andchangingtheorderofdifferentiationandintegration,wehaveagain
C t2ftftdt t2f2tdt
12t 1 2 t 2
1 1
(1-11)
Inotherwords,thedecisiontoimprovetheapproximationby orporatinganadditionaltermin
doesnotrequireustomodifythecoefficient,providedthatf3tisorthogonaltof2tinthechosentimeinterval1.Bypreciselysimilarargumentswecouldshowthatthevalueof C13would
beunchangedifthesignalweretobeapproximatedbyf3talone.
Thisimportantresultmaybeextendedtocovertherepresentationofasignalintermsofawholesetoforthogonalfunctions.Thevalueofanycoefficientdoesnotdependuponhowmanyfunctionsfromthecompletesetareusedintheapproximation,andisthusunalteredwhenfurthertermsareluded.Theuseofasetoforthogonalfunctionsforsignaldescriptionisogoustotheuseofthreemutuallyperpendicular(thatis,orthogonal)axesforthedescriptionofavectorinthree-dimensionalspace,andgivesrisetothenotionofa‘signalspace’.Accuratesignalrepresentationwilloftenrequiretheuseofmanymorethanthreeorthogonalfunctions,sothatwe
mustthinkofasignalwithinsomeintervalmultidimensionalspace.
t1tt2asbeingrepresentedbyapointina
Tosummarize,thereareanumberofsetsoforthogonalfunctionsavailablesuchastheso-calledLegendrepolynomialsandWalshfunctionsfortheapproximatedescriptionofsignalwaveform,ofwhichthesinusoidalsetisthemostwidelyused.Setsinvolvingpolynomialsintarenotbytheirverynatureperiodic,butmaysensiblybeusedtodescribeonecycle(orless)ofaperiodicwaveform;outsidethechoseninterval,errorsbetweenthetruesignalanditsapproximationwillnormallyreaserapidly.Adescriptionofonecycleofaperiodicsignalintermsofsinusoidialfunctionswill,however,beequallyvalidforalltimebecauseoftheperiodicnatureofeverymemberoftheorthogonal.
TheFourierseries
ThebasisoftheFourierseriesisth omplexperiodicwaveformmaybe ysedintoanumberofharmonicallyrelatedsinusoidalwaveswhichconstituteanorthogonalset.Ifwehaveaperiodic
signalftwithaperiodequaltoT,thenftmayberepresentedbytheseries
ftA0Ancosn1tBnsinn1t (1-12)
n1 n1
where12T.Thusftisconsideredtobemadeupbytheadditionofasteadylevel(A0)toanumberofsinusoidalandcosinusoidalwavesofdifferentfrequencies.Thelowestofthese
frequenciesis1(radianspersecond)andiscalledthe‘fundamental’;wavesofthisfrequencyhaveaperiodequaltothatofthesignal.Frequency21iscalledthe‘secondharmonic’,31isthe‘thirdharmonic’,andsoon.Certainrestrictions,knownastheDirichletconditions,mustbe
ceduponftfortheaboveseriestobevalid.Theintegralftdtoveracompleteperiodmustbefinite,andmaynothavemorethanafinitenumberofdiscontinuitiesinanyfinite
interval.Fortunay,theseconditionsdonotexcludeanysignalwaveformofpracticalinterest.
Evaluationofthecoefficients
1
WenowturntothequestionofevaluatingthecoefficientsA0,AnandBn.Usingtheminimumsquareerrorcriteriondescribedinforegoingtext,andwritingforthesakeofconvenience,wehave
A0
2
fxdx,
A1
fxcosnx.dx,
B1
fxsinnx.dx(1-13)
n n
Althoughinthemajorityofcasesitisconvenientfortheintervalofintegrationtobesymmetricalabouttheorigin,anyintervalequalinlengthtooneperiodofthesignalwaveformmaybechosen.
Manywaveformofpracticalinterestareeitherevenoroddfunctionsoftime.If ftiseventhenbydefinitionftft,whereasifitisoddftft.Ifftisevenandwemultiplyitbytheoddfunctionsinn1ttheresultisalsoodd.ThustheintegrandforeveryBnisodd.Nowwhenanoddfunctionisintegratedoveranintervalsymmetricalaboutt0,theresultisalwayszero.HencealltheBcoefficientsarezeroandweareleftwithaseriescontaining
onlycosines.Bysimilararguments,ifftisoddtheAcoefficientsmustbezeroandweareleftwithasineseries.Itisindeedintuitivelyclearthatanevenfunctioncanonlybebuiltupfroma
numberofotherfunctionswhicharethemselveseven,andviceversa.
WehavealreadyseenhowtheFourierseriesissimplifiedinthecaseofanevenoroddfunction,bylosingeitheritssineoritscoserms.Adifferenttypeofsimplificationoccursinthecaseofawaveformpossessingwhatisknowas‘half-wavesymmetry’.Inmathematicalterms,half-wavesymmetryexistswhen
ftftT2 (1-14)
InotherwordsanytwovaluesofthewaveformseparatedbyT2willbeequalinmagnitudeandoppositeinsign.Generalizing,onlyoddharmonicsexhibithalf-wavesymmetry,andthereforeawaveformofanycomplexitywhichhassuchsymmetrycannotcontainevenharmoniccomponents.Conversely,awaveformknowntocontainanysecond,,orotherharmoniccomponentscannotdisyhalf-wavesymmetry.
Usually,wehavealwaysintegratedoveracompletecycletoderivethecoefficients.Howeverin
thecaseofanoddorevenfunctionitissufficient,andoftensimpler,tointegrateoveronlyonehalfofthecycleandtomultiplytheresultby2.Furthermoreifthewaveisnotonlyevenoroddbutalsodisyshalf-wavesymmetry,itisenoughtointegrateoveronequarterofacycleandmultiplyby4.Thesecloserlimitsareadequateinsuchcasesthefunctionthatisbeingintegratedisrepetitive,repeatinicewithinoneperiodwhenthefunctioniseitherevenorodd,andfourtimeswithinoneperiodwhenitalsoexhibitshalf-wavesymmetry.
Choiceoftimeorigin,andwaveformpower
TheamountofworkinvolvedalculatingtheFourierseriescoefficientsforaparticularwaveformshapeisreducedifthewaveformiseitherevenorodd,andthismayoftenbearrangedbyajudiciouschoiceoftimeorigin(thatis,shiftoftimeorigin)2.ThisshifthasthereforemerelyhadtheeffectofconvertingaFourierseriescontainingonlysinetermsintoonecontainingonlycosineterms;theamplitudeofacomponentatanyonefrequencyis,aswewouldexpect,unaltered.Foracomplicatedwaveformwhichisneitherevennorodd,itmustbeexpectedtoludebothsineandcosermsinitsFourierseries.
Asthetimeoriginofawaveformisshifted,thevarioussineandcosinecoefficientsofitsFourierserieswillchange,butthesumofthesquaresofanytwocoefficients AnandBnwillremainconstant,whi eansthattheaveragepowerofthewaveform,aconceptfamiliartoelectrical
engineers,isunaltered.
Theaboveideaslea turallyto ternativetrigonometricformfortheFourierseries.Ifthetwofundamentalcomponentsofawaveformare
A1cos1tandB1sin1t
theirsummaybeexpressedin ternativeformusingtrigonometricidentities
AcostBsint A2B2costtan1B1
1 1 1 1 1 1 1
A2B2sinttan1B1
A1
(1-15)
1 1 1
A1
Thusthesineandcosinecomponentsataparticularfrequencyareexpressedasasinglecosineorsinewavetogetherwithaphaseshift.IfthisprocedureisappliedtoallharmoniccomponentsoftheFourierseries,wegetthealtiveforms
ftA0Cncosn1tnor
N1
ftA0Cnsinn1tn
N1
(1-16)
where
A2B2
Cn ,ntan1Bn
An,n
tan1AnBn
(1-17)
Finally,wenotethats ethemeanpowerrepresentedbyanycomponentwaveis
n n n
0
A2B22C22 (1-18)
andthepowerrepresentedbythetermequalto
A0issimplyA2,thetotalaverag
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國圓餅鎖數(shù)據(jù)監(jiān)測研究報告
- 2025年四川鐵道職業(yè)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 2024版上海二手房交易合同規(guī)范文本
- 2025年唐山幼兒師范高等??茖W(xué)校高職單招高職單招英語2016-2024歷年頻考點(diǎn)試題含答案解析
- 2025年中國寶寶沐浴露市場調(diào)查研究報告
- 二零二四因公出國類項(xiàng)目環(huán)境保護(hù)與可持續(xù)發(fā)展合同3篇
- 2025至2031年中國瀘州老窖酒行業(yè)投資前景及策略咨詢研究報告
- 2025-2030全球低溫DBB閥門行業(yè)調(diào)研及趨勢分析報告
- 二零二五版童裝行業(yè)創(chuàng)新產(chǎn)品研發(fā)合作協(xié)議3篇
- 二零二四年醫(yī)療器械臨床試驗(yàn)研究者臨床試驗(yàn)不良反應(yīng)監(jiān)測合同3篇
- 南通市2025屆高三第一次調(diào)研測試(一模)地理試卷(含答案 )
- 2025年上海市閔行區(qū)中考數(shù)學(xué)一模試卷
- 2025中國人民保險集團(tuán)校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 重癥患者家屬溝通管理制度
- 法規(guī)解讀丨2024新版《突發(fā)事件應(yīng)對法》及其應(yīng)用案例
- 小學(xué)二年級數(shù)學(xué)口算練習(xí)題1000道
- 納布啡在產(chǎn)科及分娩鎮(zhèn)痛的應(yīng)用
- DZ/T 0462.4-2023 礦產(chǎn)資源“三率”指標(biāo)要求 第4部分:銅等12種有色金屬礦產(chǎn)(正式版)
- 化學(xué)-福建省龍巖市2024屆高三下學(xué)期三月教學(xué)質(zhì)量檢測(一模)試題和答案
- 凸優(yōu)化在經(jīng)濟(jì)學(xué)與金融學(xué)中的應(yīng)用
- 家譜、宗譜頒譜慶典講話
評論
0/150
提交評論