文本1周期信號_第1頁
文本1周期信號_第2頁
文本1周期信號_第3頁
文本1周期信號_第4頁
文本1周期信號_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

PartI

PeriodicSignals

Time-descriptions

Thefactthatthegreatmajorityoffunctionswhichmayusefullybeconsideredassignalsarefunctionsoftimelendsjustificationtothetreatmentofsignaltheoryintermsoftimeandoffrequency.AperiodicsignalwillthereforebeconsideredtobeonewhichrepeatsitselfexactlyeveryTseconds,whereTiscalledtheperiodofthesignalwaveform;thetheoreticaltreatmentofperiodicwaveformsassumesthatthiactrepetitionitendedthroughoutalltime,bothpastandfuture.Inpractice,ofcourse,signalsdonotrepeatthemselvesindefiniy.Nevertheless,awaveformsuchastheoutputvoltageofamainsrectifierpriortosmoothingdoesrepeatitselfverymanytimes,anditsysisasastrictlyperiodicsignalyieldsvaluableresults.Inothercases,suchastheelectrocardiogram,thewaveformisquasi-periodicandmayusefullybetreatedastrulyperiodicforsomepurpose.Itisworthnotingthatatrulyrepetitivesignalisofverylittleinterestinacommunicationchannel,senofurtherinformationisconveyedafterthefirstcycleofthewaveformhasbeenreceived.Oneofthemainreasonsfordiscussingperiodicsignalsisthlearunderstandingoftheirysisisagreathelpwhendealingwithaperiodicandrandomones.

Acompletetime- descriptionofsuchasignalinvolvesspecifyingitsvaluepreciselyateveryinstantoftime.Insomecasesthismaybedoneverysimplyusingmathematicalnotation.Fortunay,itisinmanycasesusefultodescribeonlycertainaspectsofasignalwaveform,ortorepresentitbyamathematicalformulawhichisonlyapproximate.Thefollowingaspectsmightberelevparticularcases:

theaveragevalueofthesignal,

thepeakvaluereachedbythesignal,

theproportionofthetotaltimespentbetweenvalueaandb,

theperiodofthesignal.

Ifitisdesiredtoapproximatethewaveformbyamathematicalexpression,suchtechniquesasapolynomialexpansion,aTaylorseries,oraFourierseriesmaybeused.Apolynomialofordernhavingtheform

ftaatat2at3 (1-1)

0 1 2 3

maybeusedtofittheactualcurveat(n+1)arbitrarypoints.Theaccuracyoffitwillgenerallyimproveasthenumberofpolynomialterms reases.Itshouldalsobenotedthattheerrorbetween

thetruesignalwaveformandthepolynomialwillnormally everylargeawayfromtheregionofthefittedpoints,andthatthepolynomialitselfcannotbeperiodic.Whereasapolynomialapproximationfitstheactualwaveformatanumberofarbitrarypoints,thealternativeTaylorseriesapproximationprovidesagoodfittoasmoothcontinuouswaveforminthevicinityofoneselectedpoint.ThecoefficientsoftheTaylorseriesarechosentomaketheseriesanditsderivativesagreewiththeactualwaveformatthispoint.Thenumberoftermsintheseriesdeterminestowhatorderofderivativethisagreementwillextend,andhencetheaccuracywithwhichseriesandactual

waveformagreeintheregionofthepointchosen.ThegeneralformoftheTaylorseriesfor

approximatingafunction

fata

dfa

dt

ta2

2!

d2fa

dt2

tan

n!

dnfa

dtn

ft

ftintheregionofthepointtaisgivenby

(1-2)

Generallyspeaking,thefittotheactualwaveformisgoodintheregionofthepointchosen,butrapidlydeterioratestoeitherside.ThepolynomialandTaylorseriesdescriptionsofasignalwaveformarethereforeonlytobe mendedwhenoneisconcernedtoachieveaccuracyoveralimitedregionofthewaveform.Theaccuracyusuallydecreasesrapidlyawayfromthisregion,althoughitmaybeimprovedbyludingadditionalterms(solongastlieswithintheregionofconvergenceoftheseries).Theapproximationsprovidedbysuchmethodsareneverperiodicinformandcannotthereforebeconsideredidealforthedescriptionofrepetitivesignals.

BycontrasttheFourierseriesapproximationiswellsuitedtotherepresentationofasignalwaveformoveranextendedinterval.Whenthesignalisperiodic,theaccuracyoftheFourierseriesdescriptionismaintainedforalltime,sethesignalisrepresentedasthesumofanumberofsinusoidalfunctionswhicharethemselvesperiodic.BeforeexaminingindetailtheFourierseriesmethodofrepresentingasignal,thebackgroundtowhatisknownasthe‘frequency- ’approachwillbeintroduced.

Frequency-descriptions

Thebasicconceptionoffrequency- ysisisthatawaveformofanycomplexitymaybeconsideredasthesumofanumberofsinusoidalwaveformsofsuitableamplitude,periodicity,and

relativephase.Acontinuoussinusoidalfunctionsintisthoughtofasa‘singlefrequency’

waveoffrequencyradians/second,andthefrequency- descriptionofasignalinvolvesitsbreakdownintoanumberofsuchbasicfunctions.ThisisthemethodofFourier ysis.

Thereareanumberofreasonswhysignalrepresentationintermsofasetofcomponentsinusoidalwavesoccupiessuchacentralroleinsignalysis.Thesuitabilityofasetofperiodicfunctionsforapproximatingasignalwaveformoveranextendedintervalhasalreadybeenmentioned,anditwillbeshownlaterthattheuseofsuchtechniquescausestheerrorbetweentheactualsignalanditsapproximationtobeminimizedinacertainimportanse.Afurtherreason

whysinusoidalfunctionsaresoimportsignalysisisthattheyoccurwidelyinthephysicalworldandareverysusceptibletomathematicaltreatment;alargeandextremelyimportantclassofelectricalandmechanicalsystems,knownas‘linearsystems’,respondssinusoidallywhendrivenbyasinusoidaldisturbingfunctionofanyfrequency.Allthesemanifestationsofsinusoidalfunctioninthephysicalworldsuggestthatsignalysisinsinusoidaltermswillsimplifytheproblemofrelatingasignaltounderlyingphysicalcauses,ortothephysicalpropertiesofasystemordevicethroughwhichithaspassed.Finally,sinusoidalfunctionsformasetofwhatarecalled‘orthogonalfunction’,theratherspecialpropertiesandadvantageofwhichwillnowbediscussed.

Orthogonalfunctions

Vectorsandsignals

Adiscussionoforthogonalfunctionsandoftheirvalueforthedescriptionofsignalsmaybeconvenientlyintroducedbyconsideringtheogybetweensignalsandvectors.Avectorisspecifiedbothbyitsmagnitudeanddirection,familiarexamplesbeingandvelocity.Suppose

wehavetwovectorsV1andV2;geometrically,wedefhecomponentofvectorV1along

vectorV2byconstructingtheperpendicularfrom ofV1

V1C12V2Ve

ontoV2.Wethenhave

(1-3)

wherevectorVeistheerrorintheapproximation.Clearly,thiserrorvectorisofminimumlengthwhenitisdrawnperpendiculartothedirectionofV2.ThuswesaythatthecomponentofvectorV1alongvectorV2isgivenbyC12V2,whereC12ischosensuchastomaketheerrorvectorassmallaspossible.Afamiliarcaseofanorthogonalvectorsystemistheuseofthreemutually

perpendicularaxeso-ordinategeometry.

Thesebasicideasaboutthecomparisonofvectorsmaybeextendedtosignals.Supposewewishtoapproximateasignalf1tbyanothersignalorfunctionf2toveracertainintervalt1tt2;inotherwords

f1tC12f2t fort1tt2

WewishtochooseC12toachievethebestapproximation.Ifwedefheerrorfunction

fetf1tC12f2t (1-4)itmightappearatfirstsightthatweshouldchooseC12soastominimizetheaveragevalueoffetoverthechoseninterval.Thedisadvantageofsuchanerrorcriterionisthatlargepositiveand

negativeerrorsoccurringatdifferentinstantswouldtendtocanceleachotherout.Thisdifficultyisavoidedifwechoosetominimizetheaveragesquared-error,ratherthantheerroritself(thisisequivalenttominimizingthesquarerootofthemean-squarederror,or’rm.s’error).Denotingthe

e

averageoff2tby,wehave

1 t2f2tdt 1 t2ftCft2dt

(1-5)

t2t1t1 e

t2t1t1

1 122

DifferentiatingwithrespecttoC12andputtingtheresultingexpressionequaltozerogivesthevalueofC12forwhichisaminimum.Thus

d 1 t2 ftCft2dt0

122 1

1

dC ttt

1 122

Expandingthebracketandchangingtheorderofintegrationanddifferentiatinggives

C t2ftftdt t2f2tdt

12t 1 2 t 2

1 1

(1-6)

Signaldescriptionbysetsoforthogonalfunctions

Supposethatwehaveapproximatedasignal f1toveracertainintervalbythefunction f2tsothatthemeansquareerrorisminimized,butthatwenowwishtoimprovetheapproximation.Itwillbedemonstratedthataveryattractiveapproachistoexpressthesignalintermsofasetof

functions f2t,f3t,f4t,etc.,whicharemutuallyorthogonal.Supposetheinitial

approximationis

f1tC12f2t (1-7)

andthattheerrorisfurtherreducedbyputting

f1tC12f2tC13f3t (1-8)

where f2tandf3tareorthogonalovertheintervalofinterest.NowthatwehaveorporatedtheadditionaltermC13f3t,itisinterestingtofindwhatthenewvalueof

C12mustbeinorderthatthemeansquareerrorisagainminimized.Wenowhave

fetf1tC12f2tC13f3t (1-9)

andthemeansquareerrorintheintervalt1tt2

1

1 t2

istherefore

2

t2t1

tf1tC12f2tC13f3t.dt (1-10)

DifferentiatingpartiallywithrespecttoC12tofindthevalueofC12forwhichthemeansquareerrorisagainminimized,andchangingtheorderofdifferentiationandintegration,wehaveagain

C t2ftftdt t2f2tdt

12t 1 2 t 2

1 1

(1-11)

Inotherwords,thedecisiontoimprovetheapproximationby orporatinganadditionaltermin

doesnotrequireustomodifythecoefficient,providedthatf3tisorthogonaltof2tinthechosentimeinterval1.Bypreciselysimilarargumentswecouldshowthatthevalueof C13would

beunchangedifthesignalweretobeapproximatedbyf3talone.

Thisimportantresultmaybeextendedtocovertherepresentationofasignalintermsofawholesetoforthogonalfunctions.Thevalueofanycoefficientdoesnotdependuponhowmanyfunctionsfromthecompletesetareusedintheapproximation,andisthusunalteredwhenfurthertermsareluded.Theuseofasetoforthogonalfunctionsforsignaldescriptionisogoustotheuseofthreemutuallyperpendicular(thatis,orthogonal)axesforthedescriptionofavectorinthree-dimensionalspace,andgivesrisetothenotionofa‘signalspace’.Accuratesignalrepresentationwilloftenrequiretheuseofmanymorethanthreeorthogonalfunctions,sothatwe

mustthinkofasignalwithinsomeintervalmultidimensionalspace.

t1tt2asbeingrepresentedbyapointina

Tosummarize,thereareanumberofsetsoforthogonalfunctionsavailablesuchastheso-calledLegendrepolynomialsandWalshfunctionsfortheapproximatedescriptionofsignalwaveform,ofwhichthesinusoidalsetisthemostwidelyused.Setsinvolvingpolynomialsintarenotbytheirverynatureperiodic,butmaysensiblybeusedtodescribeonecycle(orless)ofaperiodicwaveform;outsidethechoseninterval,errorsbetweenthetruesignalanditsapproximationwillnormallyreaserapidly.Adescriptionofonecycleofaperiodicsignalintermsofsinusoidialfunctionswill,however,beequallyvalidforalltimebecauseoftheperiodicnatureofeverymemberoftheorthogonal.

TheFourierseries

ThebasisoftheFourierseriesisth omplexperiodicwaveformmaybe ysedintoanumberofharmonicallyrelatedsinusoidalwaveswhichconstituteanorthogonalset.Ifwehaveaperiodic

signalftwithaperiodequaltoT,thenftmayberepresentedbytheseries

ftA0Ancosn1tBnsinn1t (1-12)

n1 n1

where12T.Thusftisconsideredtobemadeupbytheadditionofasteadylevel(A0)toanumberofsinusoidalandcosinusoidalwavesofdifferentfrequencies.Thelowestofthese

frequenciesis1(radianspersecond)andiscalledthe‘fundamental’;wavesofthisfrequencyhaveaperiodequaltothatofthesignal.Frequency21iscalledthe‘secondharmonic’,31isthe‘thirdharmonic’,andsoon.Certainrestrictions,knownastheDirichletconditions,mustbe

ceduponftfortheaboveseriestobevalid.Theintegralftdtoveracompleteperiodmustbefinite,andmaynothavemorethanafinitenumberofdiscontinuitiesinanyfinite

interval.Fortunay,theseconditionsdonotexcludeanysignalwaveformofpracticalinterest.

Evaluationofthecoefficients

1

WenowturntothequestionofevaluatingthecoefficientsA0,AnandBn.Usingtheminimumsquareerrorcriteriondescribedinforegoingtext,andwritingforthesakeofconvenience,wehave

A0

2

fxdx,

A1

fxcosnx.dx,

B1

fxsinnx.dx(1-13)

n n

Althoughinthemajorityofcasesitisconvenientfortheintervalofintegrationtobesymmetricalabouttheorigin,anyintervalequalinlengthtooneperiodofthesignalwaveformmaybechosen.

Manywaveformofpracticalinterestareeitherevenoroddfunctionsoftime.If ftiseventhenbydefinitionftft,whereasifitisoddftft.Ifftisevenandwemultiplyitbytheoddfunctionsinn1ttheresultisalsoodd.ThustheintegrandforeveryBnisodd.Nowwhenanoddfunctionisintegratedoveranintervalsymmetricalaboutt0,theresultisalwayszero.HencealltheBcoefficientsarezeroandweareleftwithaseriescontaining

onlycosines.Bysimilararguments,ifftisoddtheAcoefficientsmustbezeroandweareleftwithasineseries.Itisindeedintuitivelyclearthatanevenfunctioncanonlybebuiltupfroma

numberofotherfunctionswhicharethemselveseven,andviceversa.

WehavealreadyseenhowtheFourierseriesissimplifiedinthecaseofanevenoroddfunction,bylosingeitheritssineoritscoserms.Adifferenttypeofsimplificationoccursinthecaseofawaveformpossessingwhatisknowas‘half-wavesymmetry’.Inmathematicalterms,half-wavesymmetryexistswhen

ftftT2 (1-14)

InotherwordsanytwovaluesofthewaveformseparatedbyT2willbeequalinmagnitudeandoppositeinsign.Generalizing,onlyoddharmonicsexhibithalf-wavesymmetry,andthereforeawaveformofanycomplexitywhichhassuchsymmetrycannotcontainevenharmoniccomponents.Conversely,awaveformknowntocontainanysecond,,orotherharmoniccomponentscannotdisyhalf-wavesymmetry.

Usually,wehavealwaysintegratedoveracompletecycletoderivethecoefficients.Howeverin

thecaseofanoddorevenfunctionitissufficient,andoftensimpler,tointegrateoveronlyonehalfofthecycleandtomultiplytheresultby2.Furthermoreifthewaveisnotonlyevenoroddbutalsodisyshalf-wavesymmetry,itisenoughtointegrateoveronequarterofacycleandmultiplyby4.Thesecloserlimitsareadequateinsuchcasesthefunctionthatisbeingintegratedisrepetitive,repeatinicewithinoneperiodwhenthefunctioniseitherevenorodd,andfourtimeswithinoneperiodwhenitalsoexhibitshalf-wavesymmetry.

Choiceoftimeorigin,andwaveformpower

TheamountofworkinvolvedalculatingtheFourierseriescoefficientsforaparticularwaveformshapeisreducedifthewaveformiseitherevenorodd,andthismayoftenbearrangedbyajudiciouschoiceoftimeorigin(thatis,shiftoftimeorigin)2.ThisshifthasthereforemerelyhadtheeffectofconvertingaFourierseriescontainingonlysinetermsintoonecontainingonlycosineterms;theamplitudeofacomponentatanyonefrequencyis,aswewouldexpect,unaltered.Foracomplicatedwaveformwhichisneitherevennorodd,itmustbeexpectedtoludebothsineandcosermsinitsFourierseries.

Asthetimeoriginofawaveformisshifted,thevarioussineandcosinecoefficientsofitsFourierserieswillchange,butthesumofthesquaresofanytwocoefficients AnandBnwillremainconstant,whi eansthattheaveragepowerofthewaveform,aconceptfamiliartoelectrical

engineers,isunaltered.

Theaboveideaslea turallyto ternativetrigonometricformfortheFourierseries.Ifthetwofundamentalcomponentsofawaveformare

A1cos1tandB1sin1t

theirsummaybeexpressedin ternativeformusingtrigonometricidentities

AcostBsint A2B2costtan1B1

1 1 1 1 1 1 1

A2B2sinttan1B1

A1

(1-15)

1 1 1

A1

Thusthesineandcosinecomponentsataparticularfrequencyareexpressedasasinglecosineorsinewavetogetherwithaphaseshift.IfthisprocedureisappliedtoallharmoniccomponentsoftheFourierseries,wegetthealtiveforms

ftA0Cncosn1tnor

N1

ftA0Cnsinn1tn

N1

(1-16)

where

A2B2

Cn ,ntan1Bn

An,n

tan1AnBn

(1-17)

Finally,wenotethats ethemeanpowerrepresentedbyanycomponentwaveis

n n n

0

A2B22C22 (1-18)

andthepowerrepresentedbythetermequalto

A0issimplyA2,thetotalaverag

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論